
WP241 (v1.0) April 19, 2006 www.xilinx.com 1

© 2006 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Custom DSP algorithms are best modeled
mathematically using MATLAB®, while complete
systems are best modeled cycle-accurately using
Simulink. The marriage of these two modeling
domains provides an efficient means to design DSP
systems into FPGAs. DSP systems are often best
described using a combination of graphical and
language-based methods. The MathWorks, the
industry leader in DSP modeling software, caters to
this dichotomy by providing a cycle-accurate
graphical design environment called Simulink® and
a mathematical modeling language called MATLAB.

White Paper: Xilinx FPGAs

WP241 (v1.0) April 19, 2006

Using MATLAB to Create IP for
System Generator for DSP

By: Thomas Hill

R

www.BDTIC.com/XILINX

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Overview

WP241 (v1.0) April 19, 2006 www.xilinx.com 2

R

Overview
Simulink is well suited for the system aspects of DSP design, including control and
synchronization of data flow to and from interfaces and memories. Simulink also
provides a rich set of pre-defined DSP algorithms in the form of blocksets from which
DSP systems can be constructed. Simulink is not, however, the most effective
environment for modeling proprietary algorithms. It unnecessarily burdens the
designer with cycle-accurate considerations and forces low-level arithmetic
operations and array accesses to be constructed from graphical blocksets rather then
concise, textual expressions.

DSP algorithm developers have found that the MATLAB language best meets their
preferred style of development. With more than 1000 built-in functions, as well as
toolbox extensions for signal processing, communications, wavelet processing, etc.,
MATLAB offers a rich and easy-to-use environment for the development and
debugging of sophisticated algorithms. Simulink 6.0 unifies these two modeling
environments with the Embedded MATLAB Block that allows MATLAB models to
simulate within Simulink and compile into C-code through Real-Time Workshop® for
processor-based DSP hardware implementations.

Xilinx System Generator for DSP is well established as a productive tool for creating
DSP designs in FPGAs. With a graphical environment based on Simulink and a
predefined Blockset of Xilinx DSP cores, System Generator for DSP meets the needs of
system architects to integrate the components of a complete design and for hardware
designers to optimize implementations. System Generator for DSP, however, lacks
support for a design flow based on MATLAB.

The AccelDSP™ Synthesis Tool was developed specifically for algorithm developers
and DSP architects who have embraced language-based modeling of DSP algorithms.
With the AccelDSP Synthesis Tool, the algorithm developer begins with his or her
floating-point MATLAB M-files to perform stimulus creation, evaluation of the
algorithm, and post processing of the results. These M-files can be loaded into the
AccelDSP tool and become the golden source for a design flow that ultimately
produces optimized implementations in Xilinx FPGAs.

DSP Hardware Systems
System Generator for DSP is well suited for modeling the DSP system, which consists
not only of the core DSP algorithm, but synchronous interfaces to external buses,
memory read/write accesses, system data synchronization, and overall system
control.

Figure 1: Xilinx System Generator Diagram showing System Control and Synchronization Logic

www.BDTIC.com/XILINX

http://www.xilinx.com

Custom DSP Algorithms

WP241 (v1.0) April 19, 2006 www.xilinx.com 3

R

Custom DSP Algorithms
The heart of any DSP system is the algorithm. Algorithms distinguish themselves
from systems in that a resulting output is a function of a given set of inputs without a
sense of clock or hardware as described by the simple equation:

Equation 1

An algorithm defined in MATLAB can be executed on an FPGA, DSP processor, or
software, each of which has a different sense of cycle-accuracy.

The unique characteristics of an algorithm offer two distinct advantages. First, the
algorithm developer is completely unencumbered by hardware implementation
details and is free to focus solely on functional behavior. This is exactly why an
estimated 90 percent of the algorithms used today in DSP originate as MATLAB
models, even when a design flow dictates they are re-implemented at a later time as
Simulink or System Generator for DSP diagrams. Calculating the FFT of a 4 x 1024
matrix of data can be done with a simple MATLAB statement, without concern for
radix, scaling, buffering, or synchronization of valid signals, as shown below:

Equation 2

Second, when modeling an algorithm, a given set of outputs corresponds to a given set
of inputs; therefore, synchronization issues do not need to be addressed in the
generated hardware. This makes an algorithm inherently schedulable through a DSP
synthesis tool, such as the AccelDSP Synthesis Tool. Hardware requirements might
dictate the need to use multiple clock cycles to compute an output, as the in case of a
resource-shared MAC FIR filter, but this operation lends itself nicely to the AccelDSP
automated flow. The introduction of a simple hardware handshaking interface enables
easy integration into the overall system as shown in Figure 2.

AccelDSP Synthesis Tool Export to System Generator Option
The AccelDSP Synthesis Tool enables System Generator for DSP to support both DSP
system and algorithm modeling methods by exporting System Generator intellectual
property (IP) based on floating-point MATLAB models. This results in a design flow
for FPGAs that is similar to the functionality obtained through the use of the
Embedded MATLAB block. The system aspects of the design can be captured using
the Xilinx DSP Blockset, while the algorithm can be captured using floating-point
MATLAB. The System Generator IP blocks created by the AccelDSP Synthesis Tool are
fixed-point, cycle-accurate.

y f x()=

y fft data 1024(,)=

Figure 2: AccelDSP Synthesis Tool Handshaking Interface

Clock

New Data Valid Done

Data In Data Out

Clock

New Data Valid

Data In

Done

Data Out

Input data latched by hardware

Output data available to downstream system

wp241_04_021606

www.BDTIC.com/XILINX

http://www.xilinx.com

Developing a Kalman Filter Example

WP241 (v1.0) April 19, 2006 www.xilinx.com 4

R

Developing a Kalman Filter Example
The following Kalman filter example shows how to take an advanced algorithm based
on MATLAB, use the AccelDSP Synthesis Tool to synthesize the design, and then
integrate into a System Generator for DSP model. A Kalman filter is a special class of
recursive, adaptive filters that is well suited to combining multiple noisy signals into a
clearer signal (for details on the topic, see the book Applied Optimal Estimation by
Arthur Gelb). Kalman filters embed a mathematical model of an object––for instance,
a commercial aircraft being tracked by a ground-based radar––using the model to
predict future behavior, and then use measured signals (such as the signature of the
aircraft returned to the radar receiver) to periodically correct the prediction.

The MATLAB M-file describing the Kalman filter is shown below. The algorithm
defines matrices R and I that describe the statistics of the measured signal and the
predicted behavior. The last nine lines of the algorithm are the code that predicts
forward and the code that corrects itself.

function [S] = simple_kalman(A)

DIM = size(A,2);
persistent p P_cap
if isempty(P_cap)
 P_cap = [8 0 0; 0 8 0; 0 0 8];
 p = ones(DIM,1)/2;
end;

I = eye(DIM);
R = [128 0 0;0 128 0; 0 0 128];

% estimate step:
P_cap_est = P_cap+I;

% correction step:
K = P_cap_est * inv(P_cap_est+R);
p = p + K * (A' - p);
P_cap = (I - K)*P_cap_est;
S = p';

This algorithm illustrates the flexibility and conciseness of the MATLAB language.
Common operators like addition and subtraction operate on arrays like A or P_cap
without the need to write loops as would be required in languages like C. Two-
dimensional arrays are automatically multiplied as matrices without any special
annotation. MATLAB operators such as matrix transposition allow the MATLAB code
to be compact and easily readable. And, complex operations like matrix inversion are

Figure 3: DSP System Block Diagram

y = f(x)

Interface
Logic

Control
Logic

Memory

Processor
Interface

Simulink Simulink
MATLAB

wp241_03_021602

www.BDTIC.com/XILINX

http://www.xilinx.com

Synthesizing RTL with the AccelDSP Synthesis Tool

WP241 (v1.0) April 19, 2006 www.xilinx.com 5

R

done using MATLAB’s extensive linear algebra capabilities. While such an algorithm
can be constructed as a block diagram, doing so will obscure the algorithm structure
so readily apparent in MATLAB.

With the AccelDSP Synthesis Tool, complex MATLAB toolbox and built-in functions,
such as the matrix inverse used in the Kalman filter example, can be taken directly to
hardware using the AccelWare™ DSP IP Toolkits. These toolkits offer numerous
matrix inverse methods. Core selection will depend on the size, structure, and values
of the matrix. In this case, the most suitable approach is to use the AccelWare QR
matrix inverse core. AccelWare cores are generated based on MATLAB syntax and are
available in a variety of implementations that lets users optimize designs for speed,
area, power, or noise. A small code edit would be required to use the AccelWare
function as shown below.

% K = P_cap_est * inv(P_cap_est+R);
K = P_cap_est * qr_inverse_001(P_cap_est+R);

Synthesizing RTL with the AccelDSP Synthesis Tool
With the MATLAB M-file now loaded into the AccelDSP Synthesis Tool, a floating-
point simulation can be performed to establish a baseline. The design is then
converted into a fixed-point representation. An array of features helps trim bits from
the design and verifies the fixed-point design effects like saturation and rounding. Bit
growth is automatically propagated through the design in a manner that allows for
user-controlled overrides. This algorithmic design exploration process helps obtain the
ideal quantization that minimizes bit widths while managing overflows/underflows,
allowing early trade-offs of silicon area versus performance metrics.

After suitable quantizations have been determined, the next step with AccelDSP is to
generate RTL for the target Xilinx device. Hardware intent can be dictated through the
use of synthesis directives shown in Table 1.

Use of these directives constitutes hardware-based design exploration that allows the
design team to further improve quality of results. In synthesizing the RTL, AccelDSP
evaluates the entire design and schedules the entire algorithm, performing boundary
optimization in the process.

Throughout this flow, AccelDSP maintains a uniform verification environment
through the use of a self-checking testbench: the input/output vectors that were
generated when verifying the fixed-point MATLAB design are used to verify the
generated RTL. This step also gives AccelDSP the information necessary to compute

Table 1: DSP Synthesis Directives

DSP Synthesis Directive Effect on Results

Rolling/unrolling of For loops Improves input sampling rate by reducing throughput.

Expansion of vector and matrix
additions and multiplications

Improves input sampling rate by reducing throughput.

RAM/ROM memory mapping
of 1D and 2D arrays

Improves FPGA utilization by mapping 1D and 2D arrays
into dedicated Xilinx Block RAM resources.

Pipeline insertion Improves input sampling rate by improving clock
frequency performance.

Shift register mapping. Improves FPGA utilization by mapping shift register
logic into SRL16s.

www.BDTIC.com/XILINX

http://www.xilinx.com

Exporting from AccelDSP Synthesis Tool to System Generator

WP241 (v1.0) April 19, 2006 www.xilinx.com 6

R

the throughput and latency of the Kalman filter, which is essential to gauge whether
the design meets specifications and to produce a cycle-accurate System Generator for
DSP model.

Exporting from AccelDSP Synthesis Tool to System Generator
Upon successful completion of RTL verification, the design is now ready for export to
System Generator for DSP by going to the Export pulldown menu in the AccelDSP
GUI and selecting System Generator (Figure 4). The AccelDSP Synthesis Tool
generates a System Generator IP block that supports both simulation and RTL code
generation.

At this point, the design flow transitions to System Generator for DSP, where the new
block for the Kalman filter is available in the Simulink Library Browser. The user need
only select the Kalman filter block and drag it into the destination model to
incorporate the AccelDSP -generated Kalman filter into a System Generator design as
shown in Figure 5.

Conclusion
Custom DSP algorithms are best modeled mathematically using MATLAB while
complete systems are best modeled cycle-accurate using Simulink. The marriage of
these two modeling domains provides an efficient means to design DSP systems into
FPGAs by allowing the use of the rich MATLAB language, including the built-in and
toolbox functions, to create System Generator IP blocks of complex DSP algorithms.
By using System Generator for DSP and AccelDSP Synthesis Tool in combination,
design teams can employ the most productive means to model hardware for

Figure 4: AccelDSP Export System Generator Command

Figure 5: Kalman Filter Exported to System Generator

www.BDTIC.com/XILINX

http://www.xilinx.com

Revision History

WP241 (v1.0) April 19, 2006 www.xilinx.com 7

R

implementation, fully involve algorithm developers in the FPGA design process, and,
as a result, complete higher quality designs in less time.

Revision History
The following table shows the revision history for this document.

Date Version Revision

04/19/06 1.0 Initial Xilinx release.

www.BDTIC.com/XILINX

http://www.xilinx.com

	Using MATLAB to Create IP for System Generator for DSP
	Overview
	DSP Hardware Systems
	Custom DSP Algorithms
	AccelDSP Synthesis Tool Export to System Generator Option
	Developing a Kalman Filter Example
	Synthesizing RTL with the AccelDSP Synthesis Tool
	Exporting from AccelDSP Synthesis Tool to System Generator
	Conclusion
	Revision History

