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Model-Based Design (MBD) helps engineers and
designers overcome the limitation of a document-
based development process by replacing written
specifications with comprehensive, system-level
mathematical models. The models serve as an
executable specification, reducing the need to build
physical prototypes. Designers can simulate and
explore architectures for implementation, quickly
and comprehensively, throughout the development
process inserting varying levels of abstraction to
ensure that the end product meets both project
requirements and system-level behavior. As
application complexity increases, simulation
performance requires acceleration. The M2C-
Accelerator extends the Xilinx AccelDSP™ MBD
solution by converting floating-point MATLAB to
fixed-point C++ for accelerated MBD verification
eliminating a potential bottleneck.
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Model-Based Design Challenge
MBD applies mathematical models at various levels of abstraction to evaluate design 
options, predict system performance and test system functionality. However, Creating 
equivalent models in multiple languages with increasing levels of detail can be a time 
consuming and error prone process, often requiring additional test benches to ensure 
functional equivalence. 

In the DSP domain, MATLAB is the algorithm modeling tool of choice, while C++ and 
System C are often used for system-level models. MATLAB is used by DSP algorithm 
developers as an alternative to C, because it provides both a highly productive 
verification environment and an efficient path to implementation. The built-in 
abstractions liberate the designer from the strict modeling style guides that are 
required by general-purpose languages, such a C/C++, allowing large design blocks 
to be represented with a high degree of efficiency. 

Design Example
One line in MATLAB can represent a transform that can fill an entire FPGA. For 
example,

Equation 1

This returns the discrete Fourier transform of the vector ”x”, computed with a 64-point 
fast Fourier transform (FFT) algorithm. If “x” is a matrix, the MATLAB fft() function 
returns the Fourier transform for each column. Simulation at this level of abstraction is 
very fast and MATLAB provides a superior analysis environment for verification 
during algorithm development. 

The MathWorks provides an interface to C simulators for integrating the DSP 
algorithm into system-level models written in C. Because both the MATLAB and C 
models are at a high-level of abstraction, there is a minimal performance impact on the 
system-level simulation. In this example, the floating-point FFT model and the 
equivalent C model run in about 6 seconds for a vector set of 10,000 frames. 

As development proceeds towards the hardware, the FFT model needs to be replaced 
with a more detailed fixed-point hardware implementation model. At this point, the 
designer must decide on the hardware architecture required to meet the system-level 
requirements. The decision tree for selecting this architecture can be quite large as 
shown in Figure 1.

y fft x 64( , )=
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AccelDSP™ Synthesis Tool and AccelWare™ DSP IP Toolkits core generators have 
proven to significantly reduce the time required to develop FPGAs and ASICs. The 
AccelDSP Synthesis Tool reads in floating-point MATLAB, automates the conversion 
to fixed-point, and synthesizes RTL (VHDL or Verilog) along with a self-checking 
testbench that uses vectors captured from the original MATLAB simulations. 
AccelWare cores are designed to be compatible with built-in MATLAB functions and 
The MathWorks Signal Processing and Communications Toolboxes. They support a 
variety of macro- and micro-architectures for linear algebra functions, such as matrix 
inversions, as well as forward error correction cores like FFTs.

The following floating-point MATLAB example (Figure 2) is for the butterfly 
operation of a radix-2, 64-point FFT and represents a hardware accurate coding style.   

This lower-level of abstraction results in verification times that are significantly 
slower. After the model has been converted to a hardware accurate, fixed-point 
representation, simulation time increases from 6 seconds to 21,643 seconds. To 
accelerate fixed-point MATLAB, AccelDSP provides performance optimized versions 
of the MATLAB quantize and quantizer functions. In this example, using the 
AccelDSP quantizer, simulation times improve 40X to 521 seconds. This performance 
gain, although significant, falls far short of the original 6 seconds and has a negative 
impact on overall system verification times.

Figure 1: FFT Hardware Architectures
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Figure 2: 64-Point Radix 2 FFT MATLAB Model

for stage = 1:LOG2N
    base = 1; % Base index for accessing data vector components
    
    % Do processing based on flag; this effectively unrolls the first stage of the 
FFT algorithm.
    if ppflag == 1
        
        % Repeat for each group of radix-2 butterflies
        for m1 = 1:groups
            % Repeat for each butterfly in group
            xtemp_real(base) = (x_real(brtbl(base))+x_real(brtbl(base+1)))/2;
            xtemp_imag(base) = (x_imag(brtbl(base))+x_imag(brtbl(base+1)))/2;
            
            xtemp_real(base+btrflys)=(x_real(brtbl(base))-x_real(brtbl(base+1)))/2;
            xtemp_imag(base+btrflys)=(x_imag(brtbl(base))-x_imag(brtbl(base+1)))/2;
            
            base = base + 2; % Move base index to first component in next group
        end;
        
        % Change flag
        ppflag = 0;   
    else
        
        % Repeat for each group of radix-2 butterflies
        for m = 1:groups
            twidindex = 1; % Index into twiddle table
            
            % Repeat for each butterfly in group
            for k=1: btrflys
               Wn_real = sintbl(twidindex+NOVER4); % Cosine sample
               Wn_imag = sintbl(twidindex); % Sine sample; Note positive sign
                     
tmp_real=xtemp_real(base+btrflys)*Wn_real+xtemp_imag(base+btrflys)*Wn_imag;
tmp_imag=xtemp_imag(base+btrflys)*Wn_real-xtemp_real(base+btrflys)*Wn_imag;
                
               xp_real = xtemp_real(base) + tmp_real;
               xp_imag = xtemp_imag(base) + tmp_imag;
                
               xq_real = xtemp_real(base) - tmp_real;
               xq_imag = xtemp_imag(base) - tmp_imag;
                
               xtemp_real(base) = xp_real/2;
               xtemp_imag(base) = xp_imag/2;
                
               xtemp_real(base+btrflys) = xq_real/2;
               xtemp_imag(base+btrflys) = xq_imag/2;
                
               base = base + 1; % Move base index to next component in group
               twidindex = twidindex + groups; % Update index into twiddle table
            end; % end of butterfly
            
            base = base + btrflys; % Move base index to first component in next group
            
        end;
        
    end; % End processing based flag
    
    groups = groups/2; % Update number of groups for next stage
    btrflys = btrflys * 2; % Update number of butterflies per group for next stage
    
end;
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Converting Floating-Point MATLAB Model to Fixed-Point C++
To accelerate MATLAB fixed-point verification performance, teams manually convert 
MATLAB models to C. The creation of this additional model is time consuming and 
error prone. To ensure model equivalence, additional test benches are required to 
provide checks between models. 

To streamline this process, M2C-Accelerator automates the conversion from floating-
point MATLAB to a fixed-point, bit-true C++. M2C-Accelerator also eliminates the 
need to manually rewrite MATLAB to C and to build additional test benches. 

In the previously discussed FFT example, M2C-Accelerator generated a fixed-point C 
model in seconds, and when used in a mixed MATLAB / C++ simulation, verification 
times drop to 40.5 seconds - a 534X improvement. If this same model is used inside a 
C verification environment, the verification time drops to 20 seconds, providing an 
overall performance increase of 1082X (Figure 3). 

Summary
Design teams who adopt MBD will continue to use a mix of languages because of their 
specific advantages at different stages in the design flow. The AccelDSP Synthesis Tool 
and AccelWare DSP IP Toolkits core generator solutions provide an accelerated path to 
verified ASIC and FPGA designs for MATLAB to RTL. With M2C-Accelerator, Xilinx 
has extended its MBD solution to provide a verified path from MATLAB to fixed-point 
C that eliminates the need to manually convert the design, improves verification 
times, and reduces errors. This new capability has the added benefit of enabling 
designer teams, who previously would not use MATLAB as a development solution 
for verifying fixed-point designs, to use the M2C-Accelerator option to alleviate 
simulation bottlenecks.

Figure 3: FFT Example Simulation Run Times
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Revision History
The following table shows the revision history for this document. 
 

Date Version Revision

04/19/06 1.0 Initial Xilinx release.
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