
WP243 (v1.0) April 19, 2006 www.xilinx.com 1

© 2006 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. All other
trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may
require for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties
or representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Model-Based Design (MBD) helps engineers and
designers overcome the limitation of a document-
based development process by replacing written
specifications with comprehensive, system-level
mathematical models. The models serve as an
executable specification, reducing the need to build
physical prototypes. Designers can simulate and
explore architectures for implementation, quickly
and comprehensively, throughout the development
process inserting varying levels of abstraction to
ensure that the end product meets both project
requirements and system-level behavior. As
application complexity increases, simulation
performance requires acceleration. The M2C-
Accelerator extends the Xilinx AccelDSP™ MBD
solution by converting floating-point MATLAB to
fixed-point C++ for accelerated MBD verification
eliminating a potential bottleneck.

White Paper: Xilinx FPGAs

WP243 (v1.0) April 19, 2006

M2C-Accelerator Facilitates
Model-Based Design

By: Tom Feist

R

www.BDTIC.com/XILINX

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Model-Based Design Challenge

WP243 (v1.0) April 19, 2006 www.xilinx.com 2

R

Model-Based Design Challenge
MBD applies mathematical models at various levels of abstraction to evaluate design
options, predict system performance and test system functionality. However, Creating
equivalent models in multiple languages with increasing levels of detail can be a time
consuming and error prone process, often requiring additional test benches to ensure
functional equivalence.

In the DSP domain, MATLAB is the algorithm modeling tool of choice, while C++ and
System C are often used for system-level models. MATLAB is used by DSP algorithm
developers as an alternative to C, because it provides both a highly productive
verification environment and an efficient path to implementation. The built-in
abstractions liberate the designer from the strict modeling style guides that are
required by general-purpose languages, such a C/C++, allowing large design blocks
to be represented with a high degree of efficiency.

Design Example
One line in MATLAB can represent a transform that can fill an entire FPGA. For
example,

Equation 1

This returns the discrete Fourier transform of the vector ”x”, computed with a 64-point
fast Fourier transform (FFT) algorithm. If “x” is a matrix, the MATLAB fft() function
returns the Fourier transform for each column. Simulation at this level of abstraction is
very fast and MATLAB provides a superior analysis environment for verification
during algorithm development.

The MathWorks provides an interface to C simulators for integrating the DSP
algorithm into system-level models written in C. Because both the MATLAB and C
models are at a high-level of abstraction, there is a minimal performance impact on the
system-level simulation. In this example, the floating-point FFT model and the
equivalent C model run in about 6 seconds for a vector set of 10,000 frames.

As development proceeds towards the hardware, the FFT model needs to be replaced
with a more detailed fixed-point hardware implementation model. At this point, the
designer must decide on the hardware architecture required to meet the system-level
requirements. The decision tree for selecting this architecture can be quite large as
shown in Figure 1.

y fft x 64(,)=

www.BDTIC.com/XILINX

http://www.xilinx.com

Design Example

WP243 (v1.0) April 19, 2006 www.xilinx.com 3

R

AccelDSP™ Synthesis Tool and AccelWare™ DSP IP Toolkits core generators have
proven to significantly reduce the time required to develop FPGAs and ASICs. The
AccelDSP Synthesis Tool reads in floating-point MATLAB, automates the conversion
to fixed-point, and synthesizes RTL (VHDL or Verilog) along with a self-checking
testbench that uses vectors captured from the original MATLAB simulations.
AccelWare cores are designed to be compatible with built-in MATLAB functions and
The MathWorks Signal Processing and Communications Toolboxes. They support a
variety of macro- and micro-architectures for linear algebra functions, such as matrix
inversions, as well as forward error correction cores like FFTs.

The following floating-point MATLAB example (Figure 2) is for the butterfly
operation of a radix-2, 64-point FFT and represents a hardware accurate coding style.

This lower-level of abstraction results in verification times that are significantly
slower. After the model has been converted to a hardware accurate, fixed-point
representation, simulation time increases from 6 seconds to 21,643 seconds. To
accelerate fixed-point MATLAB, AccelDSP provides performance optimized versions
of the MATLAB quantize and quantizer functions. In this example, using the
AccelDSP quantizer, simulation times improve 40X to 521 seconds. This performance
gain, although significant, falls far short of the original 6 seconds and has a negative
impact on overall system verification times.

Figure 1: FFT Hardware Architectures

Y = FFT(x);

Single Fly Steaming
IO

Fractional
Stage

Fractional
Stage w /o RAM

16 64 655361024

Array Scalar

Complex Real

3 mult +
5 adders

4 mult +
2 adders

2 4

Macro-
Architectures

Micro-
Architectures

www.BDTIC.com/XILINX

http://www.xilinx.com

Design Example

WP243 (v1.0) April 19, 2006 www.xilinx.com 4

R

Figure 2: 64-Point Radix 2 FFT MATLAB Model

for stage = 1:LOG2N
 base = 1; % Base index for accessing data vector components

 % Do processing based on flag; this effectively unrolls the first stage of the
FFT algorithm.
 if ppflag == 1

 % Repeat for each group of radix-2 butterflies
 for m1 = 1:groups
 % Repeat for each butterfly in group
 xtemp_real(base) = (x_real(brtbl(base))+x_real(brtbl(base+1)))/2;
 xtemp_imag(base) = (x_imag(brtbl(base))+x_imag(brtbl(base+1)))/2;

 xtemp_real(base+btrflys)=(x_real(brtbl(base))-x_real(brtbl(base+1)))/2;
 xtemp_imag(base+btrflys)=(x_imag(brtbl(base))-x_imag(brtbl(base+1)))/2;

 base = base + 2; % Move base index to first component in next group
 end;

 % Change flag
 ppflag = 0;
 else

 % Repeat for each group of radix-2 butterflies
 for m = 1:groups
 twidindex = 1; % Index into twiddle table

 % Repeat for each butterfly in group
 for k=1: btrflys
 Wn_real = sintbl(twidindex+NOVER4); % Cosine sample
 Wn_imag = sintbl(twidindex); % Sine sample; Note positive sign

tmp_real=xtemp_real(base+btrflys)*Wn_real+xtemp_imag(base+btrflys)*Wn_imag;
tmp_imag=xtemp_imag(base+btrflys)*Wn_real-xtemp_real(base+btrflys)*Wn_imag;

 xp_real = xtemp_real(base) + tmp_real;
 xp_imag = xtemp_imag(base) + tmp_imag;

 xq_real = xtemp_real(base) - tmp_real;
 xq_imag = xtemp_imag(base) - tmp_imag;

 xtemp_real(base) = xp_real/2;
 xtemp_imag(base) = xp_imag/2;

 xtemp_real(base+btrflys) = xq_real/2;
 xtemp_imag(base+btrflys) = xq_imag/2;

 base = base + 1; % Move base index to next component in group
 twidindex = twidindex + groups; % Update index into twiddle table
 end; % end of butterfly

 base = base + btrflys; % Move base index to first component in next group

 end;

 end; % End processing based flag

 groups = groups/2; % Update number of groups for next stage
 btrflys = btrflys * 2; % Update number of butterflies per group for next stage

end;

www.BDTIC.com/XILINX

http://www.xilinx.com

Converting Floating-Point MATLAB Model to Fixed-Point C++

WP243 (v1.0) April 19, 2006 www.xilinx.com 5

R

Converting Floating-Point MATLAB Model to Fixed-Point C++
To accelerate MATLAB fixed-point verification performance, teams manually convert
MATLAB models to C. The creation of this additional model is time consuming and
error prone. To ensure model equivalence, additional test benches are required to
provide checks between models.

To streamline this process, M2C-Accelerator automates the conversion from floating-
point MATLAB to a fixed-point, bit-true C++. M2C-Accelerator also eliminates the
need to manually rewrite MATLAB to C and to build additional test benches.

In the previously discussed FFT example, M2C-Accelerator generated a fixed-point C
model in seconds, and when used in a mixed MATLAB / C++ simulation, verification
times drop to 40.5 seconds - a 534X improvement. If this same model is used inside a
C verification environment, the verification time drops to 20 seconds, providing an
overall performance increase of 1082X (Figure 3).

Summary
Design teams who adopt MBD will continue to use a mix of languages because of their
specific advantages at different stages in the design flow. The AccelDSP Synthesis Tool
and AccelWare DSP IP Toolkits core generator solutions provide an accelerated path to
verified ASIC and FPGA designs for MATLAB to RTL. With M2C-Accelerator, Xilinx
has extended its MBD solution to provide a verified path from MATLAB to fixed-point
C that eliminates the need to manually convert the design, improves verification
times, and reduces errors. This new capability has the added benefit of enabling
designer teams, who previously would not use MATLAB as a development solution
for verifying fixed-point designs, to use the M2C-Accelerator option to alleviate
simulation bottlenecks.

Figure 3: FFT Example Simulation Run Times

Simulation Model Format

10

100

1000

10000

100000

Time in Seconds

21, 643

521

40
20

MATLAB Script & Model
& Quantizer

MATLAB Script & Model,
AccelChip Quantizer

MATLAB Script, AccelChip
M2C & Quantizer

C++ Script, AccelChip M2C &
Quantizer

wp239_05_021406

www.BDTIC.com/XILINX

http://www.xilinx.com

Revision History

WP243 (v1.0) April 19, 2006 www.xilinx.com 6

R

Revision History
The following table shows the revision history for this document.

Date Version Revision

04/19/06 1.0 Initial Xilinx release.

www.BDTIC.com/XILINX

http://www.xilinx.com

	M2C-Accelerator Facilitates Model-Based Design
	Model-Based Design Challenge
	Design Example
	Converting Floating-Point MATLAB Model to Fixed-Point C++
	Summary
	Revision History

