
XAPP482 (v2.0) June 27, 2005 www.xilinx.com 1

© 2005 Xilinx, Inc. All rights reserved. XILINX, the Xilinx logo, and other designated brands included herein are trademarks of Xilinx, Inc.
All other trademarks are the property of their respective owners.

Summary This application note describes a working MicroBlaze™ system that stores software code, user
data, and configuration data in non-volatile Platform Flash PROMs, simplifying system design
and reducing cost. This application note further provides a portable hardware design, software
design, and additional script utilities to be used during the implementation flow.

Introduction Many FPGA designs that incorporate software embedded systems using MicroBlaze and
PowerPC™ processors also utilize external volatile memory to execute software code.
Systems using volatile memory must also include a non-volatile device to store the software
code during power-down. Most FPGA systems include a Platform Flash PROM, herein referred
to as PROM, on the board to load the FPGA configuration data upon power-up. Additionally,
many applications might use other non-volatile devices (for example, SPI Flash, Parallel Flash,
or PICs) to hold small amounts of user data, such as MAC addresses, leading to a large
number of non-volatile devices on a system board.

This application note demonstrates how to reduce the need for multiple non-volatile devices on
the system board and how to use one PROM for FPGA configuration data, software code, and
user data. The concepts covered in this application note are:

• Loading applications software from PROMs

• Introducing methods of storing multiple blocks of data in PROMs as shown in Figure 1

• Building minimal MicroBlaze memory systems for applications such as boot loading

• Introducing dynamic rewriting of reset, interrupt, and exception vectors in C code

• Defining software flows for appending a PROM file with software and user data

Although this application note is written for the low-cost MicroBlaze embedded processor core,
it is portable to any 8-bit, 16-bit, or 32-bit microcontroller with general-purpose input/output
ports.

Application Note: Virtex Families and Spartan Families

XAPP482 (v2.0) June 27, 2005

MicroBlaze Platform Flash/PROM Boot
Loader and User Data Storage
Author: Shalin Sheth

R

www.BDTIC.com/XILINX

http://www.xilinx.com

2 www.xilinx.com XAPP482 (v2.0) June 27, 2005

Board Considerations
R

Figure 1 shows the contents of a PROM when multiple sections are stored. The software
application section can be anywhere in the PROM and is identified by the address sync word.
Following the address sync is a 32-bit software start address, a 32-bit software section
specifying the number of bytes to follow, and then the actual software data. The software start
address, number of bytes, and additional software data can be repeated multiple times in the
same software application. The end of the software application section is defined by two 32-bit
words equaling zero. The USER data section is defined simply by a USER sync word followed
by data. The data between any FPGA configuration data, software application, or USER data is
uncertain, which is the reason that the synchronization words are used.

Board
Considerations

To read the PROM after the FPGA has been configured, some requirements must be
considered when designing the system board. This section describes the Master Serial
configuration connections and the reasons for the necessary connections.

Figure 2 shows the board connections that are necessary in a Master Serial configuration
method. For more details, refer to XAPP694, whose board considerations are the same as for
this reference design.

The Xilinx Spartan™-3 Starter Kit board provides a working example with these board
considerations. A description of this board and its schematics are available in UG130.

For more information regarding FPGA configuration, refer to XAPP501 and XAPP138.

Figure 1: Methods of Storing Multiple Data Sections in a PROM

FPGA Configuration
0x0

0xFFFF

Uncertain

Software Application

Uncertain

USER Data

Uncertain

PROM Contents

Data Sync
Word

(32 bits)

Address Sync
Word

(32 bits)

Software Start
Address
(32 bits)

Software Section
of bytes
(32 bits)

Software Data
(# of bytes x 8 bits)

Software Start
Address
(32 bits)

Software Section
of bytes
(32 bits)

Software Data
(# of bytes x 8 bits)

32'b0

optional

32'b0

Data

X482_01_081404

www.BDTIC.com/XILINX

http://www.xilinx.com/bvdocs/appnotes/xapp694.pdf
http://www.xilinx.com/bvdocs/userguides/ug130.pdf
http://www.xilinx.com/bvdocs/xapp501.pdf
http://www.xilinx.com
http://www.xilinx.com/bvdocs/appnotes/xapp138.pdf

Board Considerations

XAPP482 (v2.0) June 27, 2005 www.xilinx.com 3

R

PROM CE Pin

The PROM CE pin is usually connected to the DONE pin of the FPGA to hold the PROM in
standby after the FPGA is configured. This pin allows the user to enable or disable the PROM
and reduce power consumption when the PROM is not going to be accessed. However, if the
DONE pin is connected to the PROM CE pin, then the PROM cannot be read after FPGA
configuration.

There are two options on how to connect the PROM CE pin:

1. Connect the CE pin to GND.

2. Connect the CE pin to a User I/O pin of the FPGA. This option requires an additional I/O pin
to the solution; however, it allows the PROM to be put into standby mode to allow power
saving. The software drives this pin to enable or disable it. The Platform Flash maximum
standby current is 1 mA, and the maximum active current is 10 mA (see DS123 for more
details).

When the FPGA DONE pin is disconnected from the PROM CE pin, the FPGA DONE pin can
be connected to an external LED to show when the FPGA has been configured (see Figure 2).

PROM CLK Pin

Route an additional User I/O pin from the FPGA to drive the CLK input of the PROM. This
connection is required for this reference design because in any master configuration mode the
configuration clock CLK generated by the FPGA stops toggling after the FPGA is successfully
configured, preventing the PROM’s address counter from advancing beyond the FPGA design
stored in the PROM. The additional User I/O clocks the CLK pin of the PROM when the PROM
is read after FPGA configuration. There is a 390Ω resistor on this trace to avoid contention
between two possible drivers of the CLK signal.

PROM OE / RESET Pin

Connect the PROM OE/RESET pin to the FPGA INIT pin to allow the FPGA to re-initiate a
configuration if a CRC error occurs during configuration. The INIT pin becomes a User I/O after
configuration, and thus can be configured to output a logic High to keep the PROM outputs
enabled.

Figure 2: Board Considerations

CLK CCLK
PROM FPGA

OE/RESET

CE

INIT/USERIO

CF

M0

M1

M2
PROG

DIN/D0

TDO

TDO

LED

DONE

DIN/D0

USERIO/CCLK
USERIO/CE

(optional)

TCK
TMS
TDI

TCK

TMS

TDI

TCK

TMS

TDI

TDO

1

1

2

2

Connect the CE pin to GND.

Connect the CE pin to a User I/O pin of the FPGA.

Two options for connecting the PROM CE pin:

X482_02_081704

www.BDTIC.com/XILINX

http://www.xilinx.com
http://www.xilinx.com/bvdocs/publications/ds123.pdf

4 www.xilinx.com XAPP482 (v2.0) June 27, 2005

Hardware Design
R

PROM DIN/D0 Pin

Connect the FPGA DIN/D0 pin to the PROM DIN/D0 pin for the PROM data to be read into the
FPGA. This is not a special connection for this application, and the DIN pin is not available for
User I/O after configuration.

Hardware
Design

To implement this reference design, a MicroBlaze system is used in the Embedded
Development Kit (EDK). The hardware core is built on a simple On-chip Peripheral Bus (OPB)
general-purpose input/output (GPIO) core to control the INIT, CE, OE, and DIN pins, which are
described in “Board Considerations.” Figure 3 shows a block diagram of the hardware system.

The promread GPIO core uses 26 four-input Look Up Tables (LUTs) and 61 flip-flops in a
Spartan-3 device. Additionally, this reference design uses a custom OPB Block RAM interface
controller core where only one block RAM is used to show a minimal system. The minimal
system in EDK 7.1i always uses four block RAMs. In an optimized system where that much
block memory is not needed, such as a boot loader, a custom block RAM interface controller
core is used to create a system with a single block RAM.

Firmware
Design

The complexity of this application is in the firmware design. The control of the PROM is handled
through the C software program. Configuration PROMs are non-addressable storage elements,
where all data is sent out serially and read by the software system.

Driver Basics

The promread function handles the interaction with the PROM:

Xuint32 promread (Xuint8 read)

Figure 3: MicroBlaze Hardware System Block Diagram

MicroBlaze
Processor

DOPB

OPB
Block
RAM

OPB

X482_03_081704

FPGA

DIN INIT

CCLK CE

OPB
EMC

Read
PROM

PROM

IOPB

www.BDTIC.com/XILINX

http://www.xilinx.com

Firmware Design

XAPP482 (v2.0) June 27, 2005 www.xilinx.com 5

R

Table 1 lists the two modes that the PROM can be read. In an address section read, the
function copies software code from the PROM to the memory location described after the
address synchronization word (0x9F8FAFBF by default) in the PROM. In a data word read, the
first 32-bit data word is read after the data synchronization word (0x8F9FAFBF by default).

Figure 4 shows examples of the usage of these two functions.

Custom utilities (xapp482.exe and xapp694.exe) are used to populate the MCS file (Xilinx’s
extension to the Intel extended hexadecimal format. Refer to “Usage/Flow” for more information
on the Perl script and update utility. The “Driver Details” section discusses how the PROM data
is constructed.

Driver Details

To understand the firmware design, it is critical to understand the contents of the PROM that
are serially output from the PROM. Figure 1, page 2 shows how the data can be stored in the
PROM.

Address Read

When an address read is indicated (promread input = 0x1), then the software reads through the
PROM 32 bits at a time until it finds a 32-bit word matching the address synchronization word.
For information on how to read data from the PROM, see “Reading the PROM.” The default
address synchronization word is 0x9F8FAFBF; however, it can be changed in the promread.h
header file and the Perl script that populates the MCS file. The uniqueness of the
synchronization word can be confirmed when the PROM file is created (refer to “Usage/Flow”
for more information).

Figure 5 shows how the data is found in the PROM. Once an address synchronization word is
found, immediately following it is a 32-bit word representing the starting address of where the
software code is stored in the processor memory map. Following this address is the number of
bytes to store after the start address. The software then reads the number of bytes from the
PROM and copies data to the address specified at the start of the block. At the completion of
the first address section, the software reads two 32-bit words. If either value is greater than
zero, then the first 32-bit word is the starting address of the next software data section and the
second word is the number of bytes in the next address section. The software continues to read
address sections until reaching the end-of-address sequence of two 32-bit words equaling zero
as shown in Figure 1, page 2. The promread function continues to read the PROM and copy
address sections as described in this paragraph until the END_PROM word of 0xFFFFFFFF is

Table 1: promread Function Description

Function Input (read) Output (returns)

Address section read 0x1 Always 0x0

Data word read 0x0 32-bit data word following data
sync word

Figure 4: Example Usage of the promread Function

#define DATAREAD 0x0
#define ADDRREAD 0x1

//to copy the contents from the PROM to a memory location
promread(ADDRREAD);

//to return a 32-bit word stored after the sync word.
xil_printf("\n\rData %x\n\r", promread(DATAREAD));

www.BDTIC.com/XILINX

http://www.xilinx.com

6 www.xilinx.com XAPP482 (v2.0) June 27, 2005

Firmware Design
R

read from the PROM. Then the promread function returns a 0x0. The value of 0xFFFFFFFF
indicates that the start of the blank data in the PROM is reached.

Data Read

When a data read is indicated (the promread input = 0x0), then the software reads through the
PROM 32 bits at a time until it finds a 32-bit word matching the data synchronization word. The
default data synchronization word is 0x8F9FAFBF; however, it can be changed in the
promread.h header file and the Perl script that populates the MCS file. The uniqueness of the
synchronization word can be confirmed when the PROM file is created (refer to “Usage/Flow”
for more information). Once the data synchronization word is found, then the promread function
returns the first 32-bit word following the data synchronization word. If additional data is
needed, you must modify the data retrieval section of the promread function to your
requirements.

Reading the PROM

To read the PROM in software, the MicroBlaze GPIO toggles the CLK pin of the PROM. The
INIT pin must be High and the CE pin must be Low to enable the PROM for reading. Every byte
that comes out of the PROM is bit swapped.

Figure 6 shows how each byte is bit swapped. The Perl script that loads the PROM swaps the
bits prior to loading it into the PROM, so that when the data is read back from the PROM, it is
read in the correct order.

Note that the bits are swapped in the MCS file if it is compared to what is being read in from the
PROM.

Figure 5: Example Contents of PROM for Software Section

Figure 6: Bit Swapping Output of PROM

9F8FAFBF 80180000 00007100 BA101056
-------- -------- -------- --------
address memory number data
sync mapped of …
word starting bytes
 address

//clock the PROM to output data
XIo_Out32(XPAR_PROMREAD_BASEADDR, OE_HIGH | CCLK_HIGH | CE_LOW);
XIo_Out32(XPAR_PROMREAD_BASEADDR, OE_HIGH | CCLK_LOW | CE_LOW);

08 67 F3 5A ...

0000 1000

0001 0000

0110 0111

1110 0110

1111 0011

1100 1111

0101 1010

0101 1010

10 E6 BF 5A

PROM Data (hex)

Binary

Bit-swapped
This is how the data

reads in the FPGA

Hex
x694_08_033104

www.BDTIC.com/XILINX

http://www.xilinx.com

Firmware Design

XAPP482 (v2.0) June 27, 2005 www.xilinx.com 7

R

Table 2 is the truth table on how the PROM control inputs get data output from the PROM.

Firmware Performance

Performance of the boot operation is slow because the data is read serially and the PROM
clock is generated in software. The time to access the PROM is also affected by the size of the
bitstream stored in the PROM. If the size of the bitstream stored in the PROM is large, then it
takes a long time for the promread function to parse through the PROM until it finds the
software or user data sections in the PROM.

Real-time performance was benchmarked on the Spartan-3 Starter Kit board running at
50 MHz. A 1 Mbit bitstream took approximately two seconds to parse through the PROM.

The size of the software code for the promread function is 0x344 (or 836) bytes.

Dual Software Project

In many embedded systems, designers use linker scripts to divide sections of software code
into different memories. Another approach is to use multiple software projects based on the
code executed. This reference design uses a two software project concept to divide the boot
loader software and the application software. The boot loader software resides in and executes
from the block RAM, and the application software resides in and executes from the SRAM. You
must set up the SRAM program so that it does not get initialized into the block RAMs. Upon
boot-up, the boot loader copies data from the PROM into the SRAM. At the completion of the
copy, the boot loader jumps to the start of the SRAM to begin execution of the application’s
software. The jump to the SRAM is done using a function pointer as described in “Changing the
Program Counter (PC) in a C Program.”

Figure 7 shows the setup of the dual software project in EDK 7.1i.

Table 2: PROM Control Input Truth Table

Control Inputs
Internal Address

Outputs

OE/RESET CE DATA

High Low If address <= TC: increment
If address > TC: don't change

Active

Low Low Held reset High-Z

High High Held reset High-Z

Low High Held reset High-Z

www.BDTIC.com/XILINX

http://www.xilinx.com

8 www.xilinx.com XAPP482 (v2.0) June 27, 2005

Firmware Design
R

Changing the Program Counter (PC) in a C Program

At the end of a boot loader, it is common to jump from the boot program space to another
address location to begin execution of application instructions. In such an example, you can
simply change the PC using assembly instructions; however, this change results in mixed
languages if your software is written in C. A simple solution is to use a function pointer in C, as
outlined in Figure 8. You must set PROG_START_ADDR to the start address of the applications
software in the boot loader.

Figure 7: Dual Software Project Approach

Figure 8: C-coded Function Pointer Used to Create a Jump Instruction in Assembly

X482_07_072804

//declare before main()
// Function point that is used at the end of the program
// to jump to the address location stated by PROG_START_ADDR
#define PROG_START_ADDR 0x80180000
int (*func_ptr) ();

// declare after main()
// function point that is set to point to the address of
// PROG_START_ADDR
func_ptr = PROG_START_ADDR;
// jump to start execution code at the address
// PROG_START_ADDR
func_ptr();

www.BDTIC.com/XILINX

http://www.xilinx.com

Firmware Design

XAPP482 (v2.0) June 27, 2005 www.xilinx.com 9

R

Figure 9 shows how the C code in Figure 8 is converted to MicroBlaze assembly language.

Reducing Code Size by Changing the Boot Code (optional)

Code size reduction, as described in this section, is accomplished by removing the default C
runtime routines (CRT) files inserted by the EDK tools for the boot-loader software project
named SRAM_boot. This optimization is optional and is only needed when software code
needs to be reduced in size, and interrupts and exceptions are not need during the boot-
loading process. If optimization is used, then the interrupt and exception handlers may still
remain in the RUN_FROM_SRAM software project, running from SRAM once it is boot loaded.
However, additional steps are necessary to set up the processor to access these handlers, as
described in “Resetting the Reset, Exception, and Interrupt Handlers.” For more information on
the software initialization file, refer to the Embedded System Tools Guide.

The init.s initialization file is included with this reference design. To modify this initialization
file, follow these steps:

1. Add the init.s file to the software project.

2. Add a linker script bootlinker.scr.

3. Modify the compiler options to disable the automatic insertion of the initialization file.

Note that by adding the init.s file to the software project, the tools automatically compile and
link the files using the assembler and the linker if certain options are set in the linker script and
compiler options.

An example linker script bootlinker.scr is included in the reference design that can be
used for the bootloader software project. In the provided linker script, the initialization file
allocates 2 KB (0x7FF) of memory. This example assumes a memory space of 2 KB (0x0 to
0x7FF). This size must be modified to match the memory space in every specific design based
on the design’s Microprocessor Hardware Specification (MHS) file. In this linker script, the
contents of the .boot section are placed in the memory space 0x0 to 0x7FF.

Two compiler settings need to be set to capture the changes to the initialization files:

1. The -nostartfiles setting tells the assembler not to include the default initialization
files. If this option is forgotten, then a multiple section declaration occurs within the linker
when the initialization files are included in the software project.

2. The –save-temps setting allows the linker to pick up the handlers from the init.s
assembly file.

Figure 10 shows how to set the compiler options.

Figure 9: Disassembly of Function Pointer

84 func_ptr = PROG_START_ADDR;
- 0xe4 <main+16>: imm -32744
- 0xe8 <main+20>: addik r3, r0, 0
- 0xec <main+24>: swi r3, r0, 1808// 0x710 <func_ptr>
86 func_ptr();

- 0xf0 <main+28>: brald r15, r3
- 0xf4 <main+32>: or r0, r0, r0

www.BDTIC.com/XILINX

http://www.xilinx.com
http://www.xilinx.com/ise/embedded/est_rm.pdf

10 www.xilinx.com XAPP482 (v2.0) June 27, 2005

Firmware Design
R

Resetting the Reset, Exception, and Interrupt Handlers

In a dual software project system, once a software project has jumped into SRAM, you may
want to access the interrupt and exception handlers that are stored in the SRAM. Usually in a
MicroBlaze system, the block RAM is memory mapped to 0x0, and the SRAM resides
somewhere else in the memory mapping. However, by default, a MicroBlaze system jumps to
either address 0x0 upon any reset or address 0x10 upon an interrupt. The default MicroBlaze
handler addresses are as follows:

• Reset: 0x0

• Exception: 0x8

• Interrupt: 0x10

To resolve this issue, you can write assembly jump routines at the default MicroBlaze handlers
to jump to the location of the software handlers in SRAM as shown in Figure 11. The software
handlers are taken, and then the jump instruction is inserted at 0x0, 0x8, or 0x10 for the Reset,
Exception, or Interrupt handling, respectively. Note that this approach dynamically modifies
instructions and may not be acceptable for some software designers; however, this is one
solution to maintaining separate boot loaders and software code. The benefit to the approach
described in this application note is that the boot loader does not need any knowledge about
the applications software, however, if the boot loader knows the locations of interrupt and
exception handlers in the SRAM, dynamically modifying software is not necessary in the
applications software.

Figure 10: Compiler Changes to Replace the CRT Files

X482_12_072704

www.BDTIC.com/XILINX

http://www.xilinx.com

Usage/Flow

XAPP482 (v2.0) June 27, 2005 www.xilinx.com 11

R

Usage/Flow The creation of the Platform Flash/PROM boot loader requires the use of custom scripts and
flows. This section describes the flow and the usage of the scripts to accomplish this. This
section also describes how to populate an MCS file with the contents of an executable linking
format (ELF) file for the software to be run out of SRAM or with user data. Table 3 shows the
features available through the customer scripts provided in the reference design.

Creating an MCS File

All flows start with an MCS file. The MCS file can be created using iMPACT or promgen. Refer
to the respective documentation on how to create an MCS file.

Figure 11: Dynamic Software to Rewrite the Reset, Exception, and Interrupt Handlers
for a MicroBlaze System

//insert before main()
extern int _start;
extern int _exception_handler;
extern int __interrupt_handler;

//==

//insert after main() and after variable declarations
int x = &_start;
(int)(0x0) = 0xb0000000 | (((x-1) & 0xFFFF0000) >> 16);
(int)(0x4) = 0xb8000000 | (((x-1) & 0xFFFF));

x = &_exception_handler;
(int)(0x8) = 0xb0000000 | (((x-1) & 0xFFFF0000) >> 16);
(int)(0xB) = 0xb8000000 | (((x-1) & 0xFFFF));

x = &__interrupt_handler;
(int)(0x10) = 0xb0000000 | (((x-1) & 0xFFFF0000) >> 16);
(int)(0x14) = 0xb8000000 | (((x-1) & 0xFFFF));

Table 3: Features of the Provided Utility

Format Contents
MEM

Address and Data

Size / 16 bytes of data Binary stored 16 bytes

Address block overhead 8 bytes

Start Address Stored No

Address Location Stored Yes

Checksum No

Boot code Medium

Multiple ELF file support Yes

Flow Three steps:
gcc Data2MEM xapp482.exe

www.BDTIC.com/XILINX

http://www.xilinx.com

12 www.xilinx.com XAPP482 (v2.0) June 27, 2005

Usage/Flow
R

Adding Software Sections to MCS Files

Figure 12 shows the software flow for adding code to PROM files.

After the code has been compiled to be executed from SRAM, the ELF file is input into
Data2MEM to output a MEM file. The encrypted ELF file format is converted to a hex MEM file
to be used by the provided Perl script. The command line to create a MEM file from an ELF file
is:

Data2MEM -bd *.elf -d -o m *.mem

For details on running Data2MEM, refer to the Development System Reference Guide.

The next step is to use the provided utility to combine the MEM file contents with the MCS file.

xapp482 *.mem *.mcs new*.mcs [syncword]

The output of the above command line is new*.mcs, which can be used to program the PROM.
If a syncword is not specified, then the default syncword of 0x9F8FAFBF is used. The above
steps can be repeated to add additional address sections to the MCS file. The utility issues a
warning if an instance of the syncword is found in the input MCS.

Adding a User Data Section to MCS Files

The command line to add a section of user data to the MCS file is:

xapp694 user_data.txt input.mcs output.mcs [-noswap]

The user must populate the userdata.txt file and maintain the following specific
requirements:

1. Every data line must be 16 bytes long.

2. Every number must be represented in hex.

3. To add a comment, insert a ‘#’ before the line.

Figure 12: Flow for Adding Application Software to a PROM File

ELF

MEM

MCS

*_new.mcs

DATA2MEM

For multiple
ELF files

xapp482.exe

X482_14_062705

www.BDTIC.com/XILINX

http://www.xilinx.com
http://toolbox.xilinx.com/docsan/xilinx7/books/docs/dev/dev.pdf

Conclusion

XAPP482 (v2.0) June 27, 2005 www.xilinx.com 13

R

4. Put a synchronization word at the start of the data section. In the example below, the
default synchronization word is 0x8F9FAFBF.

Note that the xapp694 utility does not check for the syncword. By default, the user data is
swapped prior to populating the output MCS file as shown in Figure 6, page 6. To disable the
swapping, the user must enable the -noswap switch.

MCS Update Utilities Gotchas

The use models for the MCS update utilities were described above. Care must be taken to not
add too much user-defined data to the PROM, otherwise the configuration tools reject the
PROM file. To select a PROM that can store both the FPGA configuration and the user-defined
data, simply add the number of bits used for the FPGA configuration to the number of user-
defined data bits, bits of software code, and synchronization patterns overhead. The number of
bits used for the FPGA configuration can be found by consulting the appropriate FPGA data
sheet.

Conclusion This application note describes board-level changes to be made to read a PROM after FPGA
configuration, ways to hold multiple data streams in a PROM, software to read user data from
a PROM, boot-loading methodologies for software systems, methods to optimize MicroBlaze
hardware and software systems for a boot loader, and finally software flows to enable
appending of PROM files with software and user data. These concepts are all applied to help
reduce overall system cost of a deployed MicroBlaze system.

Design
Resources

The reference design described in this application note can be downloaded from the following
link:

http://www.xilinx.com/bvdocs/appnotes/xapp482.zip

References The following Xilinx documents provide supplementary material useful with this application
note:

1. XAPP694: “Reading User Data from Configuration PROMs”

2. XAPP501: “Configuration Quick Start Guidelines”

3. XAPP138: “Virtex FPGA Series Configuration and Readback”

4. UG130: Spartan-3 Starter Kit Board User Guide

5. UG111: Embedded System Tools Guide

6. Development System Reference Guide

7. DS099: Spartan-3 FPGA Family Complete Data Sheet

8. MicroBlaze Processor Reference Guide

9. DS123: Platform Flash In-System Programmable Configuration PROMs

#This is data block 0
#The sync pattern is 8F9FAFBF
#The data is ASCII code for:
#XAPP 694 DATA BLOCK 0
#0123456789012345678901234567890
8F9FAFBF584150502036393420444154
4120424C4F434B203000000000000000

www.BDTIC.com/XILINX

http://www.xilinx.com
http://www.xilinx.com/bvdocs/appnotes/xapp482.zip
http://www.xilinx.com/bvdocs/appnotes/xapp694.pdf
http://www.xilinx.com/bvdocs/appnotes/xapp501.pdf
http://www.xilinx.com/bvdocs/appnotes/xapp138.pdf
http://www.xilinx.com/bvdocs/userguides/ug130.pdf
http://www.xilinx.com/ise/embedded/est_rm.pdf
http://toolbox.xilinx.com/docsan/xilinx7/books/docs/dev/dev.pdf
http://www.xilinx.com/bvdocs/publications/ds099.pdf
http://www.xilinx.com/ise/embedded/mb_ref_guide.pdf
http://www.xilinx.com/bvdocs/publications/ds123.pdf

14 www.xilinx.com XAPP482 (v2.0) June 27, 2005

Revision History
R

Revision
History

The following table shows the revision history for this document.

Date Version Revision

08/19/04 1.0 Initial Xilinx release.

06/27/05 2.0 Added new boot initialization file and new MCS population utilities to
reference design.

www.BDTIC.com/XILINX

http://www.xilinx.com

	Summary
	Introduction
	Board Considerations
	PROM CE Pin
	PROM CLK Pin
	PROM OE / RESET Pin
	PROM DIN/D0 Pin

	Hardware Design
	Firmware Design
	Driver Basics
	Driver Details
	Address Read
	Data Read

	Reading the PROM
	Firmware Performance
	Dual Software Project
	Changing the Program Counter (PC) in a C Program
	Reducing Code Size by Changing the Boot Code (optional)
	Resetting the Reset, Exception, and Interrupt Handlers

	Usage/Flow
	Creating an MCS File
	Adding Software Sections to MCS Files
	Adding a User Data Section to MCS Files

	MCS Update Utilities Gotchas

	Conclusion
	Design Resources
	References
	Revision History

