
XAPP547 (v1.0.1) November 28, 2006 www.xilinx.com 1

© 2006 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. PowerPC is a
trademark of IBM Inc. All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may require
for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties or
representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Summary This application note describes how to implement a Virtex™-4 FX PowerPC™ 405 system with
the Xilinx floating point unit (FPU) coprocessor. An FPU connected to the PowerPC auxiliary
processor unit (APU) interface can accelerate software applications from anywhere between
three to twenty times. The reference design provided includes a completed design created
using the Xilinx Embedded Development Kit (EDK). Source code for a finite impulse response
(FIR) filter is provided along with a graphics utility for display output on a Windows-based PC.

Introduction Floating-point intensive algorithms are frequently required for embedded systems and DSP
applications such as image processing, digital pre-distortion, and audio. Software emulation of
the floating point instructions is often too slow for many system requirements and dedicated,
tightly-coupled floating-point circuitry can provide the needed performance.

The FPU for the Virtex-4 PowerPC 405 processor is a single precision IEEE-754-compliant
(with minor and documented exceptions) peripheral that accelerates floating-point code
execution by up to 20 times. The FPU is tightly coupled to the PowerPC processor through the
auxiliary processor unit (APU) controller and fully supported by the Xilinx GNU compiler to
ensure hardware abstraction and ease of use. For more details on the FPU, see [Ref 1].

As shown in Figure 1, the reference design demonstrates how an amplitude-modulated (AM)
signal buried in the noise can be extracted via a FIR filter. This included reference design is built
using the Xilinx EDK. A step-by-step tutorial for building the design under EDK is provided in an
accompanying tutorial [Ref 2].

For this reference design (see Figure 2), the single-precision, lite version of the FPU is used.
The lite version does not support floating-point division or square root. Since a FIR filter only
utilizes floating-point multiplies and adds, the lite version of the FPU provides an optimal

Application Note: Virtex-4 FPGAs

XAPP547 (v1.0.1) November 28, 2006

PowerPC Processor with
Floating Point Unit for
Virtex-4 FX Devices
Authors: Gaurav Gupta, Ben Jones, and Glenn C. Steiner

R

Figure 1: Original AM Signal; AM Signal with Noise; and FIR Filtered Signal

Input Signal

Input Signal with Noise

Filtered Signal with
Noise Removed

XAPP547_01_101206

www.BDTIC.com/XILINX

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Characteristics of the FIR Filter Reference Design

XAPP547 (v1.0.1) November 28, 2006 www.xilinx.com 2

R

solution for performance with minimal logic utilization. When a floating-point function is not
supported by a particular FPU, the operation is emulated in software. Thus, in this reference
design, floating-point divide operations required to compute the performance metric are
performed via software emulation.

Characteristics
of the FIR Filter
Reference
Design

The FIR filter can be used to implement many forms of filtered frequency response and is
typically implemented via a series of delays, multiplies, and adds. This filter is well suited for
digital applications, and frequently a filter has tens to over a hundred filter stages. An overview
of FIR filters can be found at [Ref 3]. Figure 3 shows the structure of the FIR filter.

In implementing the reference design, an amplitude-modulated (AM) signal is buried in the
noise, and a bandpass filter is necessary to recover the original signal. A Windows-based
application, ScopeFIR from Iowegian International, is used to aid in the design of the filter and
in generation of the filter coefficients. ScopeFIR can be found at:

http://www.iowegian.com/

Two FIR filter algorithms were implemented: fir_basic and fir_8reg. Fir_basic is a textbook
implementation of the FIR algorithm and is adapted from source obtained in [Ref 4]. The
original source can be found at:

http://www.dspguru.com/info/faqs/firfaq.htm

Figure 2: PowerPC Processor with FPU Block Diagram

200 MHz

FPU
100 MHz

Bridge

Block RAM LEDS

OPB

XAPP547_02_101906

PLB

LCD UART

Power PC
Processor

Figure 3: FIR Filter Implementation

Delay

X

xn

h0

Delay Delay

h1 h2

yn

X X

+ +

hN-2 hN-1X X

+ +

XAPP547_03_101206

www.BDTIC.com/XILINX

http://www.xilinx.com
http://www.iowegian.com/
http://www.dspguru.com/info/faqs/firfaq.htm

Implementing the FPU Reference Design

XAPP547 (v1.0.1) November 28, 2006 www.xilinx.com 3

R

The fir_basic algorithm follows:

FLOAT fir_basic(FLOAT *input, int ntaps, FLOAT h[], FLOAT z[])
{
 int ii;
 FLOAT accum;
 // store input at the beginning of the delay line
 z[0] = *input;
 // calc FIR
 accum = 0;
 for (ii = 0; ii < ntaps; ii++) accum += h[ii] * z[ii];
 // shift delay line
 for (ii = ntaps - 2; ii >= 0; ii--) z[ii + 1] = z[ii];
 return accum;
}

Prior to algorithm execution, the z array, which is a shifted version of the input data, must be
initialized to zero via the clear function:

void clear(int ntaps, FTYPE z[])
{
 int ii;
 for (ii = 0; ii < ntaps; ii++) z[ii] = 0.000;
}

The fir_basic algorithm is a direct implementation of the FIR filter shown in Figure 3, where h(ii)
are the filter coefficients, z(ii) are the delayed (shifted) inputs, and accum is the accumulated
output.

Using the FPU, the fir_basic filter achieves a performance of 9.9 MFLOPS — a performance
improvement of 3.6 times when compared to the software floating-point emulation library.
However, the PowerPC processor FPU has a peak throughput of 100 MFLOPS when operated
at 100 MHz as in this reference design. By optimizing how data is handled and presented to the
FPU, substantially higher performance can be achieved. The algorithm fir_8reg provides such
an implementation, exploiting techniques to enable efficient utilization of the pipeline in the
FPU:

• Loop unrolling

• Utilization of array pointers instead of indexes

• Reorganizing the code to eliminate FPU pipeline dependencies

• Holding of a partial set of coefficients in the FPU register file

Utilizing the above techniques, the fir_8reg algorithm obtains a performance of 56 MFLOPS,
representing an improvement of 20 times over the performance of the software floating-point
emulation library.

Implementing
the FPU
Reference
Design

Reference Design Environment

The PowerPC processor FPU reference design is built and tested using the following Xilinx
software tools:

• ISE™ software – Version 8.2.02i (Service Pack 2)

• EDK – Version 8.2.01i (Service Pack 1)

The reference design is demonstrated utilizing the following hardware:

• Xilinx ML403 Virtex-4 evaluation platform

• Xilinx Parallel Cable IV or Xilinx Platform Cable USB for bitstream download and HW/SW
debug

• Windows-based PC running the supplied graphics utility MathGraphX.exe

www.BDTIC.com/XILINX

http://www.xilinx.com

Implementing the FPU Reference Design

XAPP547 (v1.0.1) November 28, 2006 www.xilinx.com 4

R

• Serial cable connected between the ML403 board and the PC

Refer to [Ref 2] for additional information on installing the design, building the reference design,
using the above products, update information, and for board configuration data.

HDL Implementation and Software Implementation

Supplied Files

The reference design consists of a completed and tested EDK PowerPC processor design. All
HDL in this design is either generated by EDK or is provided as a library element within EDK.
The PowerPC software reference design example is written in C.

The reference design is provided as a ZIP file archive. [Ref 2] describes in detail how to unzip
the design and gives the proper location for the design files. As shown in Table 1, the design is
implemented in three forms and three associated directories, allowing the user to start at any
one of three design points, bypassing hardware system builds. The completed design ready for
download to the ML403 Evaluation Platform is located under the FPU_Lab_FIR_Filter_Part3
directory.

Table 2 lists the files contained within the PowerPC FPU archive in each of the directories listed
in Table 1. Not listed in the table are files generated by XPS in the implementation of the design
and located in the directories FPU_Lab_FIR_Filter_Part2, and FPU_Lab_FIR_Filter_Part3.

Table 1: Design Directory Structure

Directory Description

..\Xilinx_Design\V4FX_Labs\FPU_Lab_FIR_Filter Initial FPU design project

..\Xilinx_Design\V4FX_Labs\FPU_Lab_FIR_Filter_Part2 The built PowerPC design as
created via the Base System
Builder Wizard

..\Xilinx_Design\V4FX_Labs\FPU_Lab_FIR_Filter_Part3 The completed and built
PowerPC design with attached
FPU

Table 2: Source Files Included in the PowerPC FPU Archive

File Name Description

..\code\fir_demo.c The top-level demonstration of the FIR filter
reference design.

..\code\fir_filters.c The FIR filter functions used by the design:
fir_basic and fir_8reg.

..\code\fir_filters.h .h file for fir_filters.c.

..\code\gpio.c A collection of low-level I/O functions,
including drivers for the LCD display located
on the ML403 evaluation platform.

..\code\io_fmt_utils.c A collection of functions for formatting data for
display via the LCD or output via the UART.

..\code\io_fmt_utils.h .h file for io_fmt_utils.c.

..\code\plotlib.c A collection of functions to plot data via the
program MathGraphX.exe.

..\code\plotlib.h .h file for plotlib.c.

www.BDTIC.com/XILINX

http://www.xilinx.com

Implementing the FPU Reference Design

XAPP547 (v1.0.1) November 28, 2006 www.xilinx.com 5

R

Table 3 lists the custom Base System Builder board description file for the ML403 evaluation
platform used by this design.

HDL Implementation

All HDL in this design is either generated by EDK or is provided as a library element within
EDK. The PowerPC software reference design example is written in C.

External Port Connections

All port connections are generated by EDK as defined in the board description file as described
in Table 3.

Software Implementation

The completed software reference design consists of the source files described in Table 2.
Filter performance is shown on two separate display devices.The first, the LCD display on the
ML403 evaluation platform shows MFLOPS performance data. The second display,
MathGraphX, displays on a Windows-based PC the input signal, the input signal with noise, the
filtered noisy signal, and the filtered noisy signal utilizing the optimized FIR filter. Figure 4
shows a typical MathGraphX data display.

..\code\stopwatch.c A collection of functions enabling timing and
benchmarking of code segments.

..\pcores\plb_tft_cntlr_ref_v1_00.c\.. A set of files for adding a VGA-TFT controller
to a design. These files are included for
completeness as they are referenced by the
ML403 board description file. These files are
not used in this design.

Table 3: Source File for Base System Builder Board Description File

File Name Description

..\EDK\board\Xilinx\boards\Xilinx_ML403_TFT\
data\Xilinx_ML403_TFT_v2_2_0.xbd

The ML403 evaluation platform board
description data.

Figure 4: MathGraphX Windows-Based PC Display

Table 2: Source Files Included in the PowerPC FPU Archive (Continued)

File Name Description

XAPP547_04_111506

www.BDTIC.com/XILINX

http://www.xilinx.com

Implementing the FPU Reference Design

XAPP547 (v1.0.1) November 28, 2006 www.xilinx.com 6

R

The reference design also demonstrates the increased performance obtained by the software
PowerPC Floating Point Performance Library. This library is available with EDK version 8.2 and
is enabled with the compiler option:

-mppcperflib

When a floating point unit is added to a design the following also occur:

• The -mfpu=<fpu_switch> compiler switch is automatically generated, telling the
compiler to create code targeting the floating point unit. In this reference design, the
compiler option -mfpu=sp_lite is generated.

• #define HAVE_XFPU and #define HAVE_XFPU_<fpu_switch> are generated by
the compiler in response to the -mfpu compiler switch. In this reference design, the
defines #define HAVE_XFPU and #define HAVE_XFPU_SP_LITE are created. This
define HAVE_XFPU is used by code in fir_demo.c to enable the additional test case
demonstrating optimized floating point code execution by the FPU.

Key Software Module Descriptions

The top-most file in the software design is fir_demo.c, containing the function main and
benchmark routines. The following functions are executed in fir_demo.c:

main()

• Enables caches

• Initializes and writes a message to the ML403 LCD display

• Blinks four LEDs on the ML403

• Calls the benchmark routine benchmark_fir() to benchmark the FIR filters and compute
MFLOPS

• Calls the filter demonstration and plotting routines via fir_filter_demo()

benchmark_fir()

• Generates and modulates the carrier sin wave, and adds random noise

• Runs and times the non-optimized FIR filter: fir_basic

• Runs and times the optimized FIR filter: fir_8reg

• Displays the performance results on the ML403 LCD display

• Sends the performance results to a serial-port-connected PC

fir_filter_demo()

• Generates and modulates the carrier sin wave, and adds random noise

• Formats and plots the original signal along with the signal with noise via MathGraphX on a
serial-port-connected PC

• Generates a filtered signal via fir_basic

• Generates a filtered signal via fir_8reg

• Formats and plots the fir_basic and fir_8reg filtered signal results via MathGraphX on a
serial-port-connected PC

www.BDTIC.com/XILINX

http://www.xilinx.com

Conclusion

XAPP547 (v1.0.1) November 28, 2006 www.xilinx.com 7

R

Resource Utilization and System Timing

The reference design in a Virtex-4 FX-12 part consumes less than 30% of the available logic
resources, enabling significant additional logic to be added to the reference design. See
Table 4.

The 200 MHz processor with 100 MHz processor local bus (PLB) and 100 MHz FPU design
meet all timing requirements. Enabling the APU interface for FPU operation limits the maximum
PowerPC operating frequency. Check [Ref 5] for limitations.

Conclusion Xilinx provides a capable software floating-point emulation library; however, many applications
have more demanding requirements that are possibly not met by this library. The Xilinx floating
FPU enables acceleration of software floating-point operations. Acceleration is highly
dependent on code implementation and actual floating point utilization. For floating-point-
intensive code, the Xilinx FPU can accelerate floating-point software from three to twenty times.
The FPU reference design supplied with this application note demonstrates this range of
performance improvement.

References 1. DS535, Xilinx, Inc., APU Floating-Point Unit v2.1 Data Sheet.

2. UG243, Xilinx, Inc., Implementing a Virtex-4 FX PowerPC System with Floating Point
Coprocessor using Platform Studio. A step-by-step tutorial for building the design under
EDK.

3. Barr, Michael and Wanger, Brian. Introduction to Digital Filters, Embedded Systems
Design, December 2002, pp. 47-48. Also availabe on line:

http://www.embedded.com/columns/showArticle.jhtml?articleID=9900828

4. Griffin, Grant. Finite Impulse Response FAQ, dspGuru, http://www.dspguru.com

5. DS302: the Virtex-4 Data Sheet: DC and Switching Characteristics.

Revision
History

The following table shows the revision history for this document.

Table 4: Reference Design Resource Utilization

Resource Number Percentage Used

Slice Flip-Flops 1,909 out of 10,944 17%

4-input LUTs 3,161 out of 10,944 28%

Bonded IOBs 15 out of 320 4%

BUFG/BUFGCTRLs 2 out of 32 6%

FIFO16/RAMB16s 34 out of 36 94%

DSP48 Slices 4 out of 32 12%

Date Version Revision

11/16/06 1.0 Initial Xilinx release.

11/28/06 1.0.1 Fixed link to UG243 in “References” section.

www.BDTIC.com/XILINX

http://www.xilinx.com
http://www.embedded.com/columns/showArticle.jhtml?articleID=9900828
http://www.xilinx.com/bvdocs/publications/ds312.pdf
http://www.xilinx.com/bvdocs/ipcenter/data_sheet/apu_fpu.pdf
http://www.xilinx.com/bvdocs/userguides/ug243.pdf
http://www.dspguru.com
http://direct.xilinx.com/bvdocs/publications/ds302.pdf

	PowerPC Processor with Floating Point Unit for Virtex-4 FX Devices
	Summary
	Introduction
	Characteristics of the FIR Filter Reference Design
	Implementing the FPU Reference Design
	Reference Design Environment
	HDL Implementation and Software Implementation
	Supplied Files
	HDL Implementation
	External Port Connections
	Software Implementation
	Key Software Module Descriptions

	Resource Utilization and System Timing

	Conclusion
	References
	Revision History

