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Summary The full throughput of a Virtex™-4 DSP48 slice can be achieved by time-multiplexing two data 
streams with a double data rate (DDR) technique. Alpha blending is an example of this 
technique. This application note describes a reference design file (xapp706.zip) available on 
the Xilinx web site.

Introduction The Virtex-4 XtremeDSP™ system feature, embodied as the DSP48 slice primitive, is a high-
performance computing element operating at an industry-leading 500 MHz. The design of the 
Virtex-4 infrastructure supports this rate, with Xesium™ clock technology, Smart RAM, and 
LUTs configured as shift registers. Many applications, however, do not have data rates of 
500 MHz. This application note describes how to harness the full computing performance of 
the DSP48 slice with data streams of lower rates by using a DDR technique through the DSP48 
slice. The DSP48 slice, operating at 500 MHz, can multiplex between two data streams, each 
operating at 250 MHz. Alpha blending of video data is one application of this technique. Alpha 
blending combines two streams of video data according to a weighting factor called alpha. This 
article explains techniques and design considerations for applying a DDR technique to two data 
streams through a single DSP48 slice.

DSP48 Slice The Virtex-4 DSP system elements are dedicated, diffused silicon with dedicated, high-speed 
routing. Each is configurable as: an 18 bit x 18 bit multiplier, a multiplier followed by a 48-bit 
accumulator (MACC), or a multiplier followed by an adder/subtracter. Built-in pipeline stages 
provide enhanced performance for throughput of 500 MHz. Even though all Virtex-4 devices 
have DSP48 slices, the SX family contains the largest ratio of DSP48 slices to logic elements. 
An industry high, the 512 DSP48 slices are ideal for math-intensive applications, such as image 
processing. The DSP48 slice is also very power efficient due to the use of a triple-oxide, 90 nm 
process. Architectural features of the DSP48 slice, such as built-in pipeline registers, 
accumulator, and cascade logic, nearly eliminate the use of general-purpose routing and logic 
resources for DSP functions and further reduce power. This slashes the DSP power 
consumption to a fraction of Virtex-II Pro devices. 

DDR with Two 
Data Streams

DDR, as used in this application note, refers to multiplexing two input data streams into one 
stream at twice the rate and interleaving (in time) the data from each stream as shown in 
Figure 1. The diagram shows the reverse operation of creating two parallel resultant streams 
after processing.
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Figure 1:  DSP48 DDR
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The DSP48 slice inputs can be driven at a fast 500 MHz clock rate from CLB flip-flops, CLB 
LUTs configured as shift registers (SRL16), and directly from block RAM. Block RAM 
configured as a FIFO using the built-in FIFO support, also supports the 500 MHz clock rate.

Design Considerations

Dealing with data at 500 MHz requires strict pipelining with registers on the outputs of each 
math or logic stage. The DSP48 slice provides optional pipeline registers on the input ports, on 
the multiplier output, and on the output port from the adder/subtracter/accumulator. Block RAM 
also has an optional output register for efficient pipelining when interfaced to the DSP48 slice. 
Where CLBs are used, only minimal levels of logic should be placed between registers to 
provide maximum speed. For DDR operation, a 2:1 mux (a single LUT level) is the only required 
logic between pipeline stages. Whether interfacing to the DSP48 slice with memory or CLBs, 
place the 500 MHz elements in close proximity to minimize the connection lengths in the 
general routing matrix. 

DDR requires the DSP48 slice operating at double the frequency of the input data streams. A 
digital clock manager (DCM) provides a phase-aligned double-frequency clock using the 
CLK2X output.

Another aspect of inserting DDR data through a section of a pipeline is insuring data passes 
cleanly between clock domains. This can require adding extra registers clocked with the 
double-frequency clock at the output of the double-pumped section to synchronize the data 
with the original clock. Typically, to insert a DDR section cleanly into a pipeline, there must be 
an even number of register delays in the DDR section.

Implementation

There are several configuration options for implementing this functionality. Figure 2 shows a 
straightforward implementation.

In Figure 2, stream 0 consists of A0 and B0 inputs. They are multiplied together and output as 
out0. Similarly, stream 1 consists of inputs A1 and B1 multiplied together and output as out1. 
There are two clock domains: the clk1x domain, at the nominal data stream frequency, and the 
clk2x domain, at twice the nominal frequency. Figure 2 shows two registers after the multiplier. 
The second is the accumulation register, even though accumulation is not used in this 
configuration. The register, however, is still required to achieve the full, pipelined performance. 
There are two sets of registers on the inputs of the DSP to make the total delay through the 
DSP48 slice an even number (4), providing easier alignment of the output data with clk1x. 
These registers are free since they are built into the DSP48 slice, and using them reduces the 
need for alignment registers external to the DSP48 slice. The extra pipeline register on out0 
compensates for taking stream 0 into the DSP one clk2x cycle before stream 1. As shown in the 

Figure 2:  Two Stream Multiply Through a DSP48 Slice
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timing diagram in Figure 3, the extra pipeline register on out0 is required to realign the stream 
0 data back into the clk1x domain.

The input mux select mux_sel is essentially the inverse of clk1x. It is important, however, to 
generate this signal from a register clocked by clk2x rather than deriving it directly from clk1x to 
avoid hold-time violations on the receiving registers. To generate the mux_sel signal, as well as 
the control for the accumulator in the DSP48, it is useful to have a clock follower signal: a signal 
with the same pattern as the clock but slightly delayed to eliminate hold problems. This clock 
follower signal is useful for signals with DDR functionality. There are many ways to create this 
mundane but important signal. One circuit, depending only on the clocks, with minimal and 
controlled delay, is shown in Figure 4.

The clock follower circuit creates a two phase version of clk1x/2 and compares the two phases. 
It determines if the next edge of clk1x is rising or falling. The timing for this circuit is illustrated 
in Figure 5. This circuit is part of the reference design.

Figure 3:  Timing of a Two Stream Multiply
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Figure 4:  Clock Follower Circuit

Figure 5:  Clock Follower Waveforms
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As shown in Figure 5, the toggle signal (and consequently tog_1) can be inverted without 
affecting follow_clk1x. The output is clk1x delayed by the clk-to-q time of a flip-flop.

At the transitions between clock domains, the data has only one clk2x period to set up. This is 
the reason for having no logical operations between registers in the two domains and why the 
placement of the first registers in the clk1x domain is more critical than other registers in the 
same domain.

Alpha Blending Alpha blending of video streams is a method of blending two images into a single combined 
image, for example: fading between two images; overlaying anti-aliased or semi-transparent 
graphics over an image; or making a transition band between two images on a split-screen or 
wipe. Alpha refers to a weighting factor defining the percentage of each image in the combined 
output picture. For two input pixels, P0, P1, and a blend factor, α, where 0 ≤ α ≤ 1.0, the output 
pixel Pf will be Equation 1:

Equation 1

Figure 6 In graphical terms:

This operation is performed separately for each component. In this implementation the 
components are Red, Green, and Blue.

Figure 6:  Alpha Blend
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A pixel rate of 250 MHz or less is sufficient for all standard-definition and high-definition video 
rates, and common VESA standards up to 1600 x 1200 at 85 Hz. Therefore, one DSP48 slice 
can perform the multiply add on one component. Also, as shown in Figure 7, a set of three 
slices can alpha blend the three components from each of two video streams. In the remaining 
discussion, only one color component is shown, but it is understood the operations must be 
done identically and in parallel on each of the three components. The same technique works for 
other linear video components such as Y, Cb, Cr.

Figure 7:  Alpha Blend on 3-Component Video
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There are several ways to implement alpha blending depending on the nature of the video 
streams and how alpha is generated. Figure 8 shows a basic implementation with two video 
streams alternating as one multiplier input. The other multiplier input alternates between alpha 
and 1 – alpha.

The operating mode of the adder alternates between add 0 (pass through) mode and add 
output (accumulate) mode. The DSP48 slice output register contains the result of the 
Video0 × alpha multiply during one clock cycle, and the final result, 
Video1 × (1 – alpha) + Video0 × alpha, on the alternate clock. 

Figure 9 shows the timing for this configuration. The align registers on the inputs of the DSP are 
used to make the total delay through the DSP48 slice an even number (4), as explained in 
“Implementation,” page 2. The final output register for blend loads new data every other DSP 
clock to register the blend results at the original pixel rate.

Figure 8:  Alpha Blend Implementation (One Component)
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Figure 9:  Alpha Blend Timing
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Equalizing Delays in Video Streams

Block RAM can be used to source the video data and/or the blend factors. Use this capability, 
for example, to equalize delay between two video streams. If two video streams are received 
from different sources, the first pixel of the first line might not be available from both streams 
(i.e., the two streams are not perfectly pixel aligned), even though the pixel rate is the same. To 
merge with an alpha blend, the pixels must be perfectly aligned and have a common clock. If 
the pixel misalignment is less than the number of pixels in a few scan lines, the built-in Virtex-4 
FIFO logic can be used to delay the leading stream so corresponding pixels from both streams 
go into the DSP48 slice at the same time. For pixel misalignment extending to a large portion of 
a frame, it can be more cost effective to use an external frame buffer. Using a FIFO also 
facilitates the synchronization of video streams from different clock domains by clocking the 
input of the FIFO in a different clock domain than the output of the FIFO. Figure 10 illustrates 
this configuration.

In this example, the Video0 stream including alpha0 is advanced in time from video stream 1, 
Video1, by n clk1x periods. The FIFO on Video0 delays the pixel data to match Video1. The 
FIFO on alpha0 delays alpha by n – 1 clocks. The 1 – alpha value is created on the output side 
of the alpha FIFO. Thus, all of the data going into the DSP slice is concurrent, that is, it 
corresponds to the same pixel in the frame. 

This equalizing delay is capable of compensating for timing mismatch to over 1000 pixels for 
the example shown and up to several lines by using cascaded FIFOs. If the delays required are 
small (<16) and constant, CLBs configured as a shift register (SRL16) can be used as the delay 
elements.

Figure 10:  Video Stream Delay Equalization
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Non-Linear Alpha Functions

One case where alpha blending is useful is in performing a wipe between two video streams. To 
create a feathered edge, or blend region, along the border between the two images, alpha 
blending can be performed across a transition band of a defined width. A linear alpha ramp in 
the transition region is most easily calculated; however, a non-linear ramp results in the 
smoothest transition. Figure 11 illustrates the feathered wipe with a transition region.

Conveniently, a block RAM can be used as a look-up table to convert a linear ramp function into 
an arbitrarily shaped, non-linear function as shown in Figure 12.

Figure 11:  Feathered Transition Region on a Horizontal Wipe
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This example, converts a 9-bit blend factor to an 18-bit alpha and an 18-bit 1 – alpha. Figure 13 
illustrates the smooth-feathering LUT function.

Although strictly speaking, alpha blending requires scaling components sum to 1, interesting 
results are obtained by combinations in which the output value sum to less than 1. For example, 
the same linear ramp input to the LUT can produce a transition from Video0 to black to Video1 
using the functions illustrated in Figure 14.

Avoid combinations where the output values (alpha + "1 – alpha") sum to more than 1 to avoid 
saturation, color wrap, and/or color shift artifacts.

Figure 13:  Non-Linear Blend Function

Figure 14:  Fade-to-Black-Border Blend Function
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Reference 
Design

The reference design is an implementation of the basic alpha blend shown in Figure 8, page 6. 
The video stream in and out consist of 10 bits each of red, green, and blue, plus HSYNC, 
VSYNC, and data enable. The alpha input is also 10 bits. The dual_stream_blend module 
containing the DSP48 HDL code has ports for the full 18 bits in and 48 bits out of the DSP48 
slice. Synthesis eliminates the unused registers and logic.

The implementation consists of two modules, dual_stream_blend and alpha_blend_top as 
shown in Figure 15. The dual_stream_blend modules allow access to the full 18-bit inputs and 
48-bit outputs of the DSP48 slice. Alpha_ blend_ top instantiates the red, green, and blue 
blenders and a DCM to produce the clk2x. It also handles converting the 10-bit inputs and 
outputs to the DSP48-sized inputs and outputs.

Figure 15:  Reference Design I/O and Hierarchy
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Bit replication, repeating MSBs in the low order bits of the inputs to the DSP, is used to preserve 
range at high values. Rounding the final result to 17 significant bits is used to preserve 
accuracy at the low end of the scale (see Appendix A: Bit Replication and Rounding). The bit 
mapping used in the reference design, including bit replication and rounding, is shown in 
Figure 16.

Neither the bit-replication nor the rounding consume any general logic resources; both simply 
make use of resources available in the DSP48 slice.

Reference Design Results

Table 1 shows the results, after place and route, of the modules implemented in this application 
note. These results were obtained using the VHDL versions with Xilinx ISE version 7.1i and 
XSE synthesis. Results using the Verilog files are not shown but are essentially identical. The 
results are for a Virtex-4 device with a -12 speed grade.

Conclusion The high performance of Virtex-4 with DSP48 slices is efficiently used by processing multiple 
data streams in a time-multiplexed fashion. With careful design, a single DSP48 can perform 
multiply operations on two independent data streams, operating at 250 MHz each. Alpha 
blending of video streams, as provided in the reference design, is one example of processing 
two data streams through a single DSP48 slice.   

Appendix A Bit Replication and Rounding 

Bit replication for multiplication is loosely analogous to rounding. The purpose, in both cases, is 
to reduce quantization errors. While rounding adds ½ LSB to the result before truncation, bit 
replication scales each factor by (1 + ½ LSB) before the product is calculated. Bit replication is 
practical when the width of the multiplier is greater than the width of the incoming factors, as is 
the case in the reference design. For optimal results of alpha blending, bit replication and 
rounding can be used together. 

Figure 16:  Bit Mapping in the Reference Design
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One way to evaluate the accuracy of the alpha blend calculations is to calculate the output 
when the value of both inputs is identical. Consider the condition when both video streams have 
the same value, n. Under such conditions, the output should be Equation 2:

Equation 2

That is, the output should match the input value regardless of the value of alpha. Figure 17 
shows the calculated outputs for several rounding and bit replication conditions. These results 
are explained in the following sections.

In all cases, the output never differs from the ideal by more than one. This difference of one may 
not be significant in itself; however, if there are multiple stages of processing, the small loss of 
accuracy at each stage can add up to significant and visible errors in the final result. 

Rounding

Simple truncation results in an output that is always one less than the input. Since the reference 
design uses a 10-bit output, it is logical to round to 10 bits by adding ½ of the LSB (see 
Reference Item 2, page 14.) Indeed, this corrects the output for the lower half of the range, but 
the top half of the range is still reduced by one. This is where bit replication can help.

Figure 17:  Output vs. Input for Identical Inputs
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Bit Replication

Bit-Replication Method For Up-Multiplying (Reference Item 1, page 14) contains the theoretical 
and mathematical treatment of bit replication. It shows how and why bit replication should be 
used when values need to be converted from a lower precision range to a higher precision 
range. For the purposes of the reference design of this application note, it is not necessary to 
convert to a higher precision range; the output resolution is the same as the input resolution. Bit 
replication does, however, offer important computational advantages as evidenced by the Bit 
Replication line in Figure 17. 

In video applications, the component and alpha values represent a normalized number 
between 0 and 1 with an implied binary point to the left of the MSB. Thus, in practice, 1 is 
represented by number with binary 1s in all bits. For an n-bit number, the highest value that can 
be represented is (2n – 1)/ 2n. Likewise, for computational simplicity, the 1 – alpha value is 
derived by the 1’s complement of alpha (also having a range 0 to all 1s). The downside of this 
is the multiplication of the component values by alpha or 1 – alpha tends to compress the range 
of output values. For example, the 8-bit result of FF × FF is FE. 

Although it cannot add new information, bit replication helps preserve the information available. 
As shown in Figure 18, it scales the value of the codes such that the highest value is much 
closer to1 for the purposes of multiplication, just as 0.99 is a better approximation of 1 than 0.9, 
an 8-bit FF Hex is a better approximation than a 4-bit F Hex. The implementation of scaling is 
trivial; it is a matter of routing input bits to more than one place. In the reference design, the 
extra precision required is free when using the18-bit input ports and 48-bit output port of the 
DSP48 slices.

In Figure 18:

• "a" is a continuous range 0 - 1

• "b" is 4-bit quantization

• "c" is 4-bit quantization, bit replicated to 8-bits.

A simple example illuminates how bit replication works. Suppose two 4-bit data streams are 
multiplied in a multiplier with 8-bit inputs. The 4-bit values range from 0 to 15 (F Hex). Assuming 
these are video values representing fractions of the scale 0 to 1, the highest value that can be 
represented is 15/16. Of course, the factors could be input to the four LSBs of the multiplier; 
however, this results in a maximum product of E1 Hex. After quantization, E1 Hex becomes E 
Hex, representing 14/16. If this output were subsequently multiplied by another 4-bit value, the 
maximum product would be D2 (after quantization, D or 13/16). The accumulation of error and 
corresponding compression in the range of outputs is apparent. Using rounding to add 8 to the 
product, the quantized value does not change. 

Figure 18:  Number Space Quantization
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Bit replication from 4 bits to 8 bits (simply repeating the 4 bits as both MSBs and LSBs of the 8-
bit value as shown in Figure 19) has the effect of scaling the factors by (1 + 1/32.) This makes 
the maximum value of the input data (F Hex) represent 255/256, a value much closer to 1, 
illustrated as "c" in Figure 18. Each number in the range is slightly offset and expanded from the 
non-bit-replicated range, "b" in Figure 18. 

This, in turn, means the output range is also expanded. The maximum product of the bit-
replicated factors is FE01 Hex (normalizes to the full F Hex). Using bit replication, further 
multiplications do not compress the range of possible products. 

Referring again to the reference design, notice in Figure 17, with bit replication, the output is 
accurate at all input values except 1 to 7. This is because, for these values, bit replication has 
no effect on the inputs (refer to Figure 16). When the values are this small, the relative error is 
great. For example, when a value of 1 is expected, a 0 is received. The percentage error is 
infinite.

Bit Replication with Rounding

Since, rounding to 10 bits corrects all of the lower values, it might seem like this should be done 
in addition to bit replication; however, this leads to an error of +1 at the high end of the range. 
This is catastrophic at the maximum input value of 1023, because the output value of 1024 
exceeds the range of the output field and, in practice, is quantized as 0.

The key to using rounding is to understand that with bit replication, there are now 17 significant 
bits in the result. Thus, by rounding the results of the multiply and add to 17 bits, the very low 
values (1 to 7) are corrected, without affecting values at the high end. (See Figure 17 “Output 
vs. Input for Identical Inputs”.) Thus, the reference design uses bit replication to 17 bits on the 
input factors before the multiply, and rounding to 17 bits on the final add (Figure 16) to improve 
accuracy and preserve the output range at all values. This is done by utilizing the resources of 
the DSP48 slice and requires no additional logic. 
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Figure 19:  Bit Replication From 4 Bits to 8 Bits
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