
XAPP706 (v1.0) March 31, 2005 www.xilinx.com 1

© 2005 Xilinx, Inc. All rights reserved. XILINX, the Xilinx logo, and other designated brands included herein are trademarks of Xilinx, Inc.
All other trademarks are the property of their respective owners.

Summary The full throughput of a Virtex™-4 DSP48 slice can be achieved by time-multiplexing two data
streams with a double data rate (DDR) technique. Alpha blending is an example of this
technique. This application note describes a reference design file (xapp706.zip) available on
the Xilinx web site.

Introduction The Virtex-4 XtremeDSP™ system feature, embodied as the DSP48 slice primitive, is a high-
performance computing element operating at an industry-leading 500 MHz. The design of the
Virtex-4 infrastructure supports this rate, with Xesium™ clock technology, Smart RAM, and
LUTs configured as shift registers. Many applications, however, do not have data rates of
500 MHz. This application note describes how to harness the full computing performance of
the DSP48 slice with data streams of lower rates by using a DDR technique through the DSP48
slice. The DSP48 slice, operating at 500 MHz, can multiplex between two data streams, each
operating at 250 MHz. Alpha blending of video data is one application of this technique. Alpha
blending combines two streams of video data according to a weighting factor called alpha. This
article explains techniques and design considerations for applying a DDR technique to two data
streams through a single DSP48 slice.

DSP48 Slice The Virtex-4 DSP system elements are dedicated, diffused silicon with dedicated, high-speed
routing. Each is configurable as: an 18 bit x 18 bit multiplier, a multiplier followed by a 48-bit
accumulator (MACC), or a multiplier followed by an adder/subtracter. Built-in pipeline stages
provide enhanced performance for throughput of 500 MHz. Even though all Virtex-4 devices
have DSP48 slices, the SX family contains the largest ratio of DSP48 slices to logic elements.
An industry high, the 512 DSP48 slices are ideal for math-intensive applications, such as image
processing. The DSP48 slice is also very power efficient due to the use of a triple-oxide, 90 nm
process. Architectural features of the DSP48 slice, such as built-in pipeline registers,
accumulator, and cascade logic, nearly eliminate the use of general-purpose routing and logic
resources for DSP functions and further reduce power. This slashes the DSP power
consumption to a fraction of Virtex-II Pro devices.

DDR with Two
Data Streams

DDR, as used in this application note, refers to multiplexing two input data streams into one
stream at twice the rate and interleaving (in time) the data from each stream as shown in
Figure 1. The diagram shows the reverse operation of creating two parallel resultant streams
after processing.

Application Note: Virtex-4 Family

XAPP706 (v1.0) March 31, 2005

Alpha Blending Two Data Streams Using
a DSP48 DDR Technique
Author: Reed P. Tidwell

R

Figure 1: DSP48 DDR

Data Stream 0

Data Stream 0

DDR Data Stream DSP48
Slice

Processed
Stream 0

Processed
Stream 1

x706_01_021305

www.BDTIC.com/XILINX

http://www.xilinx.com
http://www.xilinx.com/bvdocs/appnotes/xapp706.zip

2 www.xilinx.com XAPP706 (v1.0) March 31, 2005

DDR with Two Data Streams
R

The DSP48 slice inputs can be driven at a fast 500 MHz clock rate from CLB flip-flops, CLB
LUTs configured as shift registers (SRL16), and directly from block RAM. Block RAM
configured as a FIFO using the built-in FIFO support, also supports the 500 MHz clock rate.

Design Considerations

Dealing with data at 500 MHz requires strict pipelining with registers on the outputs of each
math or logic stage. The DSP48 slice provides optional pipeline registers on the input ports, on
the multiplier output, and on the output port from the adder/subtracter/accumulator. Block RAM
also has an optional output register for efficient pipelining when interfaced to the DSP48 slice.
Where CLBs are used, only minimal levels of logic should be placed between registers to
provide maximum speed. For DDR operation, a 2:1 mux (a single LUT level) is the only required
logic between pipeline stages. Whether interfacing to the DSP48 slice with memory or CLBs,
place the 500 MHz elements in close proximity to minimize the connection lengths in the
general routing matrix.

DDR requires the DSP48 slice operating at double the frequency of the input data streams. A
digital clock manager (DCM) provides a phase-aligned double-frequency clock using the
CLK2X output.

Another aspect of inserting DDR data through a section of a pipeline is insuring data passes
cleanly between clock domains. This can require adding extra registers clocked with the
double-frequency clock at the output of the double-pumped section to synchronize the data
with the original clock. Typically, to insert a DDR section cleanly into a pipeline, there must be
an even number of register delays in the DDR section.

Implementation

There are several configuration options for implementing this functionality. Figure 2 shows a
straightforward implementation.

In Figure 2, stream 0 consists of A0 and B0 inputs. They are multiplied together and output as
out0. Similarly, stream 1 consists of inputs A1 and B1 multiplied together and output as out1.
There are two clock domains: the clk1x domain, at the nominal data stream frequency, and the
clk2x domain, at twice the nominal frequency. Figure 2 shows two registers after the multiplier.
The second is the accumulation register, even though accumulation is not used in this
configuration. The register, however, is still required to achieve the full, pipelined performance.
There are two sets of registers on the inputs of the DSP to make the total delay through the
DSP48 slice an even number (4), providing easier alignment of the output data with clk1x.
These registers are free since they are built into the DSP48 slice, and using them reduces the
need for alignment registers external to the DSP48 slice. The extra pipeline register on out0
compensates for taking stream 0 into the DSP one clk2x cycle before stream 1. As shown in the

Figure 2: Two Stream Multiply Through a DSP48 Slice

×

clk2xclk1x

A0

A1

B0

B1

out0 = A0 x B0
out1 = A1 x B1

clk1x

out0

out1

DSP48 Slice

x706_02_021305

www.BDTIC.com/XILINX

http://www.xilinx.com

DDR with Two Data Streams

XAPP706 (v1.0) March 31, 2005 www.xilinx.com 3

R

timing diagram in Figure 3, the extra pipeline register on out0 is required to realign the stream
0 data back into the clk1x domain.

The input mux select mux_sel is essentially the inverse of clk1x. It is important, however, to
generate this signal from a register clocked by clk2x rather than deriving it directly from clk1x to
avoid hold-time violations on the receiving registers. To generate the mux_sel signal, as well as
the control for the accumulator in the DSP48, it is useful to have a clock follower signal: a signal
with the same pattern as the clock but slightly delayed to eliminate hold problems. This clock
follower signal is useful for signals with DDR functionality. There are many ways to create this
mundane but important signal. One circuit, depending only on the clocks, with minimal and
controlled delay, is shown in Figure 4.

The clock follower circuit creates a two phase version of clk1x/2 and compares the two phases.
It determines if the next edge of clk1x is rising or falling. The timing for this circuit is illustrated
in Figure 5. This circuit is part of the reference design.

Figure 3: Timing of a Two Stream Multiply

clk1x

clk2x

A0 Reg

A1 Reg

A DSP input

B0 Reg

B1 Reg

B DSP input

Mux sel

align 0 reg

Mult. Reg

out1

Adder Reg

out0

A DSP input_del

B DSP input del

A1:2 A0:3 A1:3 A0:4 A1:4 A0:5 A1:5 A0:6A0:0 A1:0 A0:1 A1:1 A0:2

B1:2 B0:3 B1:3 B0:4 B1:4 B0:5 B1:5 B0:6B0:0 B0:1B1:0 B0:2B1:1

B0:2 B1:2 B0:3 B1:3 B0:4 B1:4 B0:5 B1:5B1:0B0:0 B1:1B0:1

Prod1:0 Prod0:1 Prod1:1 Prod0:2 Prod1:2 Prod0:3 Prod1:3 Prod0:4Prod0:0

Prod1:1 Prod0:2 Prod1:2 Prod0:3 Prod1:3 Prod0:4 Prod1:4 Prod0:5Prod0:0 Prod0:1Prod1:0

Prod0:1 Prod1:1 Prod0:2 Prod1:2 Prod0:3 Prod1:3 Prod0:4 Prod1:4Prod0:0 Prod1:0

A0:2 A1:2 A0:3 A1:3 A0:4 A1:4 A0:5 A1:5A1:0A0:0 A1:1A0:1

A0:0

A1:0

A0:1

A1:1

B1:3 B1:4 B1:5 B1:6B1:0 B1:1 B1:2

B0:3 B0:4 B0:5B0:0 B0:1 B0:2 B0:6

A0:2

A1:2

A0:3 A0:4 A0:5 A0:6

A1:3 A1:4 A1:5 A1:6

x706_03_021305

Prod1:0 Prod1:1 Prod1:2 Prod1:3

Prod0:0 Prod0:1 Prod0:2 Prod0:3

Figure 4: Clock Follower Circuit

Figure 5: Clock Follower Waveforms

T Q

clk1x
clk2x

1
follow_clk1x

x706_04_021305

clk2x

toggle

tog_1

follow_clk1x

clk1x

x706_05_021305

www.BDTIC.com/XILINX

http://www.xilinx.com

4 www.xilinx.com XAPP706 (v1.0) March 31, 2005

Alpha Blending
R

As shown in Figure 5, the toggle signal (and consequently tog_1) can be inverted without
affecting follow_clk1x. The output is clk1x delayed by the clk-to-q time of a flip-flop.

At the transitions between clock domains, the data has only one clk2x period to set up. This is
the reason for having no logical operations between registers in the two domains and why the
placement of the first registers in the clk1x domain is more critical than other registers in the
same domain.

Alpha Blending Alpha blending of video streams is a method of blending two images into a single combined
image, for example: fading between two images; overlaying anti-aliased or semi-transparent
graphics over an image; or making a transition band between two images on a split-screen or
wipe. Alpha refers to a weighting factor defining the percentage of each image in the combined
output picture. For two input pixels, P0, P1, and a blend factor, α, where 0 ≤ α ≤ 1.0, the output
pixel Pf will be Equation 1:

Equation 1

Figure 6 In graphical terms:

This operation is performed separately for each component. In this implementation the
components are Red, Green, and Blue.

Figure 6: Alpha Blend

Pf αP0 1 α–()P1+=

×

×

P0

P1

alpha

1 – alpha

Pf+

x706_06_021305

www.BDTIC.com/XILINX

http://www.xilinx.com

Alpha Blending

XAPP706 (v1.0) March 31, 2005 www.xilinx.com 5

R

A pixel rate of 250 MHz or less is sufficient for all standard-definition and high-definition video
rates, and common VESA standards up to 1600 x 1200 at 85 Hz. Therefore, one DSP48 slice
can perform the multiply add on one component. Also, as shown in Figure 7, a set of three
slices can alpha blend the three components from each of two video streams. In the remaining
discussion, only one color component is shown, but it is understood the operations must be
done identically and in parallel on each of the three components. The same technique works for
other linear video components such as Y, Cb, Cr.

Figure 7: Alpha Blend on 3-Component Video

clk2x

Red 0 Red 1

×

A
lp

h
a

1
–
 A

lp
h
a

+

0

Red Out

clk1x

Alpha

Generator

1–

BlueGreen

Green Out Blue Out

Video Stream 0

Video Stream 1

Red

DSP48
Slice

x706_07_021305

www.BDTIC.com/XILINX

http://www.xilinx.com

6 www.xilinx.com XAPP706 (v1.0) March 31, 2005

Alpha Blending
R

There are several ways to implement alpha blending depending on the nature of the video
streams and how alpha is generated. Figure 8 shows a basic implementation with two video
streams alternating as one multiplier input. The other multiplier input alternates between alpha
and 1 – alpha.

The operating mode of the adder alternates between add 0 (pass through) mode and add
output (accumulate) mode. The DSP48 slice output register contains the result of the
Video0 × alpha multiply during one clock cycle, and the final result,
Video1 × (1 – alpha) + Video0 × alpha, on the alternate clock.

Figure 9 shows the timing for this configuration. The align registers on the inputs of the DSP are
used to make the total delay through the DSP48 slice an even number (4), as explained in
“Implementation,” page 2. The final output register for blend loads new data every other DSP
clock to register the blend results at the original pixel rate.

Figure 8: Alpha Blend Implementation (One Component)

clk2x clk1x

Video 0

Video 1

alpha

1−alpha

clk1x

Blend = (Video0 × alpha)
+ (Video1 × (1−alpha)0

A

B

× ±

zero

DSP48 Slice

Blend

Align

x706_08_030605

Figure 9: Alpha Blend Timing

clk1x

clk2x

Video 0 Reg

Video 1 Reg

V0:3

A Input Reg

B Input Reg

a:0

Mux Sel

Blend Output

Mult Reg

Blend 1 Blend 2 Blend 3 Prod0:4Prod0:3Prod0:2Prod0:1Blend 0Prod0:0

Prod0:0 Prod1:0 Prod0:1 Prod1:1 Prod0:2 Prod1:2 Prod0:3 Prod1:3 Prod0:4 Prod1:4 Prod0:5

Blend 4Acc Reg

alpha Reg

1 – alpha Reg

Blend 0 Blend 1 Blend 2 Blend 3

A Align Reg

B Align Reg

x706_09_030705

V0:4

V0:4

V0:5

V0:5

V1:3

V1:3

V1:4

V1:4

V1:5

V0:6

V1:5 V0:6

V1:6

V0:0

V0:0

V0:1

V0:1

V0:2

V0:2

V1:0

V1:0

V1:1

V1:1

V1:2

V1:2

V0:0 V0:1 V0:2V1:0 V1:1 V1:2

V0:3

V0:4 V0:5V1:3 V1:4 V1:5V0:3

1 – a:0

1 – a:0

a:1

a:1

1 – a:1

1 – a:0

1 – a:1

a:2

a:1

a:2

a:2

1 – a:2

1 – a:1

1 – a:2

1 – a:2

a:3

a:3

a:3

1 – a:3

1 – a:3

1 – a:3

a:4

a:4

a:4

1 – a:4

1 – a:4

1 – a:4

a:5

a:5

a:5

1 – a:5

1 – a:5

a:6

1 – a:6

a:6

1 – a:5

a:0

a:0

www.BDTIC.com/XILINX

http://www.xilinx.com

Alpha Blending

XAPP706 (v1.0) March 31, 2005 www.xilinx.com 7

R

Equalizing Delays in Video Streams

Block RAM can be used to source the video data and/or the blend factors. Use this capability,
for example, to equalize delay between two video streams. If two video streams are received
from different sources, the first pixel of the first line might not be available from both streams
(i.e., the two streams are not perfectly pixel aligned), even though the pixel rate is the same. To
merge with an alpha blend, the pixels must be perfectly aligned and have a common clock. If
the pixel misalignment is less than the number of pixels in a few scan lines, the built-in Virtex-4
FIFO logic can be used to delay the leading stream so corresponding pixels from both streams
go into the DSP48 slice at the same time. For pixel misalignment extending to a large portion of
a frame, it can be more cost effective to use an external frame buffer. Using a FIFO also
facilitates the synchronization of video streams from different clock domains by clocking the
input of the FIFO in a different clock domain than the output of the FIFO. Figure 10 illustrates
this configuration.

In this example, the Video0 stream including alpha0 is advanced in time from video stream 1,
Video1, by n clk1x periods. The FIFO on Video0 delays the pixel data to match Video1. The
FIFO on alpha0 delays alpha by n – 1 clocks. The 1 – alpha value is created on the output side
of the alpha FIFO. Thus, all of the data going into the DSP slice is concurrent, that is, it
corresponds to the same pixel in the frame.

This equalizing delay is capable of compensating for timing mismatch to over 1000 pixels for
the example shown and up to several lines by using cascaded FIFOs. If the delays required are
small (<16) and constant, CLBs configured as a shift register (SRL16) can be used as the delay
elements.

Figure 10: Video Stream Delay Equalization

clk2x clk1xclk1x

Video0

Video1

alpha0

FIFO16

1K x 18

1 – α

delay n

FIFO16

1K x 18

Blend× ±

zero

DSP48 Slice

Align

delay n – 1

x706_10_030605

www.BDTIC.com/XILINX

http://www.xilinx.com

8 www.xilinx.com XAPP706 (v1.0) March 31, 2005

Alpha Blending
R

Non-Linear Alpha Functions

One case where alpha blending is useful is in performing a wipe between two video streams. To
create a feathered edge, or blend region, along the border between the two images, alpha
blending can be performed across a transition band of a defined width. A linear alpha ramp in
the transition region is most easily calculated; however, a non-linear ramp results in the
smoothest transition. Figure 11 illustrates the feathered wipe with a transition region.

Conveniently, a block RAM can be used as a look-up table to convert a linear ramp function into
an arbitrarily shaped, non-linear function as shown in Figure 12.

Figure 11: Feathered Transition Region on a Horizontal Wipe

Linear Alpha Ramp

Video 0

Video 1

Combined
Video

Non-Linear Alpha Ramp

0

1

0

1

B
lend

R
egion

x706_11_032305

Figure 12: Non-Linear Blending Using a Block RAM Look-Up Table

clk2x clk1x

Video0

Video1

Linear
Blend
Factor

Block RAM
Look-up

Table

512 x 36

zero

DSP48 Slice

alpha

1 -alpha

clk1x

blend

align

× ±

x706_12_030705

www.BDTIC.com/XILINX

http://www.xilinx.com

Alpha Blending

XAPP706 (v1.0) March 31, 2005 www.xilinx.com 9

R

This example, converts a 9-bit blend factor to an 18-bit alpha and an 18-bit 1 – alpha. Figure 13
illustrates the smooth-feathering LUT function.

Although strictly speaking, alpha blending requires scaling components sum to 1, interesting
results are obtained by combinations in which the output value sum to less than 1. For example,
the same linear ramp input to the LUT can produce a transition from Video0 to black to Video1
using the functions illustrated in Figure 14.

Avoid combinations where the output values (alpha + "1 – alpha") sum to more than 1 to avoid
saturation, color wrap, and/or color shift artifacts.

Figure 13: Non-Linear Blend Function

Figure 14: Fade-to-Black-Border Blend Function

alpha

address

1 – alpha

address
0

1

0

1

x706_13_030705

alpha
address

1 – alpha

address
0

1

0

1

x706_14_030705

www.BDTIC.com/XILINX

http://www.xilinx.com

10 www.xilinx.com XAPP706 (v1.0) March 31, 2005

Reference Design
R

Reference
Design

The reference design is an implementation of the basic alpha blend shown in Figure 8, page 6.
The video stream in and out consist of 10 bits each of red, green, and blue, plus HSYNC,
VSYNC, and data enable. The alpha input is also 10 bits. The dual_stream_blend module
containing the DSP48 HDL code has ports for the full 18 bits in and 48 bits out of the DSP48
slice. Synthesis eliminates the unused registers and logic.

The implementation consists of two modules, dual_stream_blend and alpha_blend_top as
shown in Figure 15. The dual_stream_blend modules allow access to the full 18-bit inputs and
48-bit outputs of the DSP48 slice. Alpha_ blend_ top instantiates the red, green, and blue
blenders and a DCM to produce the clk2x. It also handles converting the 10-bit inputs and
outputs to the DSP48-sized inputs and outputs.

Figure 15: Reference Design I/O and Hierarchy

red_blender

green_blender blue_blender

alpha_blend_top

dual_stream_blenddual_stream_blend

dual_stream_blend

DCM DSP48
Slice

video 0 [17:0]

blend [47:0]

video 1 [17:0]

alpha [17:0]

r_strm
0 [9:0]

g_strm
0 [9:0]

b_strm
0 [9:0]

r_strm
1 [9:0]

g_strm
1 [9:0]

b_strm
1 [9:0]

alpha_strm
 [9:0]

de_alpha[9:0]

hsync_strm
0 [9:0]

vsync_strm
0 [9:0]

de_strm
0 [9:0]

de_strm
1 [9:0]

r_blend [9:0]
g_blend [9:0]

b_blend [9:0]

vsync_blend [9:0]

hsync_blend [9:0]

de_blend [9:0]
Video Stream 0 Video Stream 1

Blended Stream

α

x706_15_033105

www.BDTIC.com/XILINX

http://www.xilinx.com

Conclusion

XAPP706 (v1.0) March 31, 2005 www.xilinx.com 11

R

Bit replication, repeating MSBs in the low order bits of the inputs to the DSP, is used to preserve
range at high values. Rounding the final result to 17 significant bits is used to preserve
accuracy at the low end of the scale (see Appendix A: Bit Replication and Rounding). The bit
mapping used in the reference design, including bit replication and rounding, is shown in
Figure 16.

Neither the bit-replication nor the rounding consume any general logic resources; both simply
make use of resources available in the DSP48 slice.

Reference Design Results

Table 1 shows the results, after place and route, of the modules implemented in this application
note. These results were obtained using the VHDL versions with Xilinx ISE version 7.1i and
XSE synthesis. Results using the Verilog files are not shown but are essentially identical. The
results are for a Virtex-4 device with a -12 speed grade.

Conclusion The high performance of Virtex-4 with DSP48 slices is efficiently used by processing multiple
data streams in a time-multiplexed fashion. With careful design, a single DSP48 can perform
multiply operations on two independent data streams, operating at 250 MHz each. Alpha
blending of video streams, as provided in the reference design, is one example of processing
two data streams through a single DSP48 slice.

Appendix A Bit Replication and Rounding

Bit replication for multiplication is loosely analogous to rounding. The purpose, in both cases, is
to reduce quantization errors. While rounding adds ½ LSB to the result before truncation, bit
replication scales each factor by (1 + ½ LSB) before the product is calculated. Bit replication is
practical when the width of the multiplier is greater than the width of the incoming factors, as is
the case in the reference design. For optimal results of alpha blending, bit replication and
rounding can be used together.

Figure 16: Bit Mapping in the Reference Design

S

R

9 8 7 6 5 4 3

33

17

2447

Video and Alpha In

DSP48 Inputs

DSP48 Output

Video Out

0

0
Add 1 for Rounding

Bit Replication

9 8 7 6 5 4 3 2 1 0

9 8 7 6 5 4 3 2 1 0

9 8 7 6 5 4 3 2 1 0

9 8 7 6 5 4 3 2 1 0

x706_16_030705

Table 1: Reference Design Results

Speed (clk2x) FF LUT DCM BUFG DSP48

500 MHz 121 64 1 2 3

www.BDTIC.com/XILINX

http://www.xilinx.com

12 www.xilinx.com XAPP706 (v1.0) March 31, 2005

Appendix A
R

One way to evaluate the accuracy of the alpha blend calculations is to calculate the output
when the value of both inputs is identical. Consider the condition when both video streams have
the same value, n. Under such conditions, the output should be Equation 2:

Equation 2

That is, the output should match the input value regardless of the value of alpha. Figure 17
shows the calculated outputs for several rounding and bit replication conditions. These results
are explained in the following sections.

In all cases, the output never differs from the ideal by more than one. This difference of one may
not be significant in itself; however, if there are multiple stages of processing, the small loss of
accuracy at each stage can add up to significant and visible errors in the final result.

Rounding

Simple truncation results in an output that is always one less than the input. Since the reference
design uses a 10-bit output, it is logical to round to 10 bits by adding ½ of the LSB (see
Reference Item 2, page 14.) Indeed, this corrects the output for the lower half of the range, but
the top half of the range is still reduced by one. This is where bit replication can help.

Figure 17: Output vs. Input for Identical Inputs

alpha n×() 1 alpha–() n×+ n=

out = in

out = in – 1

Input Value

10235130 8

Truncation

Rounding to 10 bits

Bit Replication

Bit Replication and Rounding to 17 bits

Bit Replication and Rounding to 10 bits

out = in +1

520

O
utput V

alue

x706_17_032305

www.BDTIC.com/XILINX

http://www.xilinx.com

Appendix A

XAPP706 (v1.0) March 31, 2005 www.xilinx.com 13

R

Bit Replication

Bit-Replication Method For Up-Multiplying (Reference Item 1, page 14) contains the theoretical
and mathematical treatment of bit replication. It shows how and why bit replication should be
used when values need to be converted from a lower precision range to a higher precision
range. For the purposes of the reference design of this application note, it is not necessary to
convert to a higher precision range; the output resolution is the same as the input resolution. Bit
replication does, however, offer important computational advantages as evidenced by the Bit
Replication line in Figure 17.

In video applications, the component and alpha values represent a normalized number
between 0 and 1 with an implied binary point to the left of the MSB. Thus, in practice, 1 is
represented by number with binary 1s in all bits. For an n-bit number, the highest value that can
be represented is (2n – 1)/ 2n. Likewise, for computational simplicity, the 1 – alpha value is
derived by the 1’s complement of alpha (also having a range 0 to all 1s). The downside of this
is the multiplication of the component values by alpha or 1 – alpha tends to compress the range
of output values. For example, the 8-bit result of FF × FF is FE.

Although it cannot add new information, bit replication helps preserve the information available.
As shown in Figure 18, it scales the value of the codes such that the highest value is much
closer to1 for the purposes of multiplication, just as 0.99 is a better approximation of 1 than 0.9,
an 8-bit FF Hex is a better approximation than a 4-bit F Hex. The implementation of scaling is
trivial; it is a matter of routing input bits to more than one place. In the reference design, the
extra precision required is free when using the18-bit input ports and 48-bit output port of the
DSP48 slices.

In Figure 18:

• "a" is a continuous range 0 - 1

• "b" is 4-bit quantization

• "c" is 4-bit quantization, bit replicated to 8-bits.

A simple example illuminates how bit replication works. Suppose two 4-bit data streams are
multiplied in a multiplier with 8-bit inputs. The 4-bit values range from 0 to 15 (F Hex). Assuming
these are video values representing fractions of the scale 0 to 1, the highest value that can be
represented is 15/16. Of course, the factors could be input to the four LSBs of the multiplier;
however, this results in a maximum product of E1 Hex. After quantization, E1 Hex becomes E
Hex, representing 14/16. If this output were subsequently multiplied by another 4-bit value, the
maximum product would be D2 (after quantization, D or 13/16). The accumulation of error and
corresponding compression in the range of outputs is apparent. Using rounding to add 8 to the
product, the quantized value does not change.

Figure 18: Number Space Quantization

0

1
F
E
D
C
B
A
9
8
7
6
5
4
3
2
1
0

FF
EE
DD
CC
BB
AA
99
88
77
66
55
44
33
22
11
00

a b c

x706_18_030705

www.BDTIC.com/XILINX

http://www.xilinx.com

14 www.xilinx.com XAPP706 (v1.0) March 31, 2005

References
R

Bit replication from 4 bits to 8 bits (simply repeating the 4 bits as both MSBs and LSBs of the 8-
bit value as shown in Figure 19) has the effect of scaling the factors by (1 + 1/32.) This makes
the maximum value of the input data (F Hex) represent 255/256, a value much closer to 1,
illustrated as "c" in Figure 18. Each number in the range is slightly offset and expanded from the
non-bit-replicated range, "b" in Figure 18.

This, in turn, means the output range is also expanded. The maximum product of the bit-
replicated factors is FE01 Hex (normalizes to the full F Hex). Using bit replication, further
multiplications do not compress the range of possible products.

Referring again to the reference design, notice in Figure 17, with bit replication, the output is
accurate at all input values except 1 to 7. This is because, for these values, bit replication has
no effect on the inputs (refer to Figure 16). When the values are this small, the relative error is
great. For example, when a value of 1 is expected, a 0 is received. The percentage error is
infinite.

Bit Replication with Rounding

Since, rounding to 10 bits corrects all of the lower values, it might seem like this should be done
in addition to bit replication; however, this leads to an error of +1 at the high end of the range.
This is catastrophic at the maximum input value of 1023, because the output value of 1024
exceeds the range of the output field and, in practice, is quantized as 0.

The key to using rounding is to understand that with bit replication, there are now 17 significant
bits in the result. Thus, by rounding the results of the multiply and add to 17 bits, the very low
values (1 to 7) are corrected, without affecting values at the high end. (See Figure 17 “Output
vs. Input for Identical Inputs”.) Thus, the reference design uses bit replication to 17 bits on the
input factors before the multiply, and rounding to 17 bits on the final add (Figure 16) to improve
accuracy and preserve the output range at all values. This is done by utilizing the resources of
the DSP48 slice and requires no additional logic.

References 1. Bit-Replication Method For Up-Multiplying by Robert A Ulichney and Shiufun Cheung,
Digital Equipment Corporation, Cambridge Research Laboratory, January, 1997.

2. XtremeDSP Design Considerations User Guide, Chapter 1, page 32, "Symmetric
Rounding Supported by Carry Logic", Xilinx Inc., September 2004.

Revision
History

The following table shows the revision history for this document.

Figure 19: Bit Replication From 4 Bits to 8 Bits

3 2 1 0

3 1 02 3 2 1 0

.

.

4-bit Data

8-bit Factor

Implied Binary Point

x706_19_030705

Date Version Revision

03/31/05 1.0 Initial Xilinx release.

www.BDTIC.com/XILINX

http://www.xilinx.com/bvdocs/userguides/ug073.pdf
http://www.xilinx.com

	Alpha Blending Two Data Streams Using a DSP48 DDR Technique
	Summary
	Introduction
	DSP48 Slice
	DDR with Two Data Streams
	Design Considerations
	Implementation

	Alpha Blending
	Equalizing Delays in Video Streams
	Non-Linear Alpha Functions

	Reference Design
	Reference Design Results

	Conclusion
	Appendix A
	Bit Replication and Rounding
	Rounding
	Bit Replication
	Bit Replication with Rounding

	References
	Revision History

