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Summary In high-reliability aerospace, avionics, and military applications, single error correction (SEC) 
and double error detection (DED) may not provide adequate protection against SDRAM 
memory faults. This makes multiple-error correction (MEC) highly desirable. Although many 
powerful error control methods including Reed-Solomon are capable of correcting multiple 
bytes of error, the general drawback with these methods is latency and speed. Most of these 
codes require at least several dozen cycles to complete the first correction. Additional latency 
is not appealing to most memory interface applications. Fortunately, Reed-Muller error control 
codes possess multiple bit error correction capability with relatively low latency and high 
performance. In this application note, the triple error correcting Reed-Muller (RM) is 
implemented in both the Virtex-II Pro™ and Virtex-4™ Platform FPGA families.

Introduction In high-reliability applications, memory can sustain multiple soft errors due to single or multiple 
event upsets caused by environmental factors (cosmic neutrons, alpha particles, etc.). The 
traditional Hamming code with SEC-DED capability can not address these types of errors. It is 
possible to use powerful non-binary BCH code such as Reed-Solomon code to address 
multiple-bit errors. However, it could take at least a couple dozen cycles of latency to complete 
the first correction and run at a relatively slow speed.

This application note explores the possibility of using Reed-Muller (RM) code in memory 
interface applications to address multiple-bit soft errors. RM code is one of the oldest error 
correction codes belonging to the Finite Geometry family. Due to its orthogonal structure, it is 
relatively easy to decode using the Majority-Logic Decoding (MLD) method (see Reference 
Design). The following section is a brief explanation of the construct and decoding of simple RM 
code. For details and the mathematical proof of the RM code consult Reference Item 2.

An rth order Reed-Muller code RM(r,m) is the set of all binary strings of length n = 2m 
associated with the Boolean polynomials p(x1; x2;…; xm) of degree at most r. A Boolean 
polynomial is a linear combination of Boolean monomials. A Boolean monomial p in the 
variables x1, x2, …, xm is the expression of the form:

 where ri ∈{0,1,2..} and 1 ≤ i ≤ m.

The degree of a monomial is deduced from its reduced form (after rules xixj = xjxi and xi
2 = xi 

are applied), and it is equal to the number of variables. This rule extends to polynomials. 
Example of a polynomial of degree 3:

q = x1+ x2+x1 x2+ x1 x2 x3

For example, the first order RM(1,3) code word size is 23 = 8 with single bit error correction 
capability. It has up to one in three variables: {1, x1, x2, x3} in each monomial as follow:

q0 = 1 q1 = 1 + x1 q2 = 1 + x2

q3 = 1 + x3 q4 = 1 + x1 + x2 q5 = 1 + x1 + x3

q6 = 1 + x2 + x3 q7 = 1 + x1 + x2 + x3
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In the RM encoder, the code word is created by the following matrix multiplication:

Where M is the original message matrix, G is the generator matrix and C is the resulting code 
word. The generation of the RM(1,3) code word C is described as:

The RM(1,3) generator matrix is:

The matrix multiplication results in the following encoder equations where ⊗ denotes an 
Exclusive-OR operation. 

C7 = M3 

C6 = M3 ⊗ M2

C5 = M3 ⊗ M1 

C4 = M3 ⊗ M2 ⊗ M1 

C3 = M3 ⊗ M0

C2 = M3 ⊗ M2 ⊗ M0

C1 = M3 ⊗ M1 ⊗ M0

C0 = M3 ⊗ M2 ⊗ M1 ⊗ M0

To decode an incoming code word C' back to its original message M', each message bit M'i is 
determined based on the majority of the corresponding orthogonal checksums Si,k generated 
from the incoming code word C'. In this case, there are four checksums for each original 
message bit M'2, M'1, and M'0. 

The orthogonal checksums for decoding the original message are shown in Table 1.

The majority rules are simple, if more than two checksums result in a "1", the original message 
bit is "1". If more than two checksums result in a "0", the original message bit is "0". 

In the case of equal number of checksums resulting in 1s and 0s, the original message bit is 
undetermined. In other words, it has reached the correcting limit of this code. However, it is 
important to note, such an event also indicates the presence of quadruple error. The decoder 

Table  1:  Orthogonal Checksums

M'0 M'1 M'2

S0,3 = C'4 ⊗ C'0 S1,3 = C'2 ⊗ C'0 S2,3 = C'1 ⊗ C'0

S0,2 = C'6 ⊗ C'2 S1,2 = C'6 ⊗ C'4 S2,2 = C'5 ⊗ C'4

S0,1 = C'5 ⊗ C'1 S1,1 = C'3 ⊗ C'1 S2,1 = C'3 ⊗ C'2

S0,0 = C'7 ⊗ C'3 S1,0 = C'7 ⊗ C'5 S2,0 = C'7 ⊗ C'6

C M G•=

C M G• M3 M2 M1 M0

1
X1

X2

X3

= =

G

1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1

=
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should flag this as a warning. Furthermore, any one group of the checksums can detect 
quadruple error independently.

To determine M'3, another partial code word C'' needs to be constructed based on the result of 
M'2, M'1, and M'0. C'' is derived from the following equations:

C''7 = 0 

C''6 = M'2

C''5 = M'1 

C''4 = M'2 ⊗ M'1 

C''3 = M'0

C''2 = M'2 ⊗ M'0

C''1 = M'1 ⊗ M'0

C''0 = M'2 ⊗ M'1 ⊗ M'0

Once C' is determined, add the original code word with C'' forming the checksum S3:

S3 = C' + C''

S3 is eight bits long. The same majority rule applies. If more than four bits are 1s, M'3 is "1" and 
if more than four bits are 0s, M'3 is "0". 

The following is an example of the code in practice. Assume the message is {0101}. The 
resulting code word C is {01011010}. Let C2 be the corrupted bit. The code word becomes 
{01011110}. The orthogonal checksums Si,k are shown in Table 2. 

Taking the majority of the checksums, the message bits are M'0 = 1, M'1 = 0, and M'2 = 1. 
Based on this result, C'' is {01011010}. Add C'' with the original code word C' {01011110}. S3 
becomes {00000100}. Hence, M'3 = 0. In summary, the original message is {0101} and the 
error position is C3 indicated by S3. 

The individual message bit M'2, M'1, M'0 decoding is done independent from others except for 
M'3. In this case, a total of two stages are needed to decode the entire message. The decoding 
logic is relatively simple. This allows RM code to be fast and low in latency compared to 
equivalent cyclic code.

Table  2:  Example Orthogonal Checksums Si,k

M'0 M'1 M'2

S0,3 = 1 S1,3 = 1 S2,3 = 1

S0,2 = 0 S1,2 = 0 S2,2 = 1

S0,1 = 1 S1,1 = 0 S2,1 = 0

S0,0 = 1 S1,0 = 0 S2,0 = 1
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Second Order 
Reed-Muller 
Code

This reference design utilizes a second order 5th degree RM code to achieve multiple bit error 
correction. The message width of RM(2,5) code is 16 bits and the code word is 32 bits. There 
are five variables: X1, X2, X3, X4, X5. It can correct at most three random error bits and detect 
four random error bits. The generator matrix [G] is defined as: 

G

0
G1

G2

G1

0
X1

X2

X3

X4

X5

= = G2

X1X
2

X1X
3

X1X
4

X1X
5

X2X
3

X2X
4

X2X
5

X3X
4

X3X
5

X4X
5

=

G

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1
0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

=
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The code word is generated similar to RM(1,3) mentioned previously. For example, code word 
bit 12 is generated as:

C12 = M15 ⊗ M14 ⊗ M13 ⊗ M10 ⊗ M9 ⊗ M6 ⊗ M3

For RM(2,5) code, decoding is accomplished in three stages. The first stage consists of eight 
checksums for each message bit from M9 to M0. As an example, the checksums for M0 are:

S0,7 = C'24 ⊗ C'17 ⊗ C'8 ⊗ C'0

S0,6 = C'25 ⊗ C'17 ⊗ C'9 ⊗ C'1

S0,5 = C'26 ⊗ C'18 ⊗ C'10 ⊗ C'2

S0,4 = C'28 ⊗ C'20 ⊗ C'12 ⊗ C'4

S0,3 = C'27 ⊗ C'19 ⊗ C'11 ⊗ C'3

S0,2 = C'29 ⊗ C'21 ⊗ C'13 ⊗ C'5

S0,1 = C'30 ⊗ C'22 ⊗ C'14 ⊗ C'6

S0,0 = C'31 ⊗ C'23 ⊗ C'15 ⊗ C'7

Majority vote is taken to decide if the message bit is 0 or 1, similar to the previously described 
majority-rule method. For example, in first stage, if there are five or more equations yielding "1", 
then the corresponding message bit is "1". Likewise, the message bit is "0" if five or more 
equations yield a "0". If there are four equations yielding "1" and four equations yielding "0", it 
indicates a quadruple error. Hence, the original message can not be correctly decoded and the 
result is an unknown message bit. 

Second stage decoding operates on the intermediate code word C''. It is created from the 
decoded message bits from the first decoding stage:

C'' = C' – [M9 … M0] [G2]

In this equation, C' is the original incoming code word, G2 is the lower portion of the generator 
matrix. Second-stage checksum generator creates checksums based on the partial code word 
C''. There are sixteen checksums for each message bit from M14 to M10. The same majority 
rules apply. 

S10,15 = C''16 ⊗ C''0 S10,7 = C''17 ⊗ C''1

S10,14 = C''24 ⊗ C''8 S10,6 = C''25 ⊗ C''9

S10,13 = C''20 ⊗ C''4 S10,5 = C''21 ⊗ C''5

S10,12 = C''28 ⊗ C''12 S10,4 = C''29 ⊗ C''13

S10,11 = C''18 ⊗ C''2 S10,3 = C''19 ⊗ C''3

S10,10 = C''26 ⊗ C''10 S10,2 = C''27 ⊗ C''11

S10,9 = C''22 ⊗ C''6 S10,1 = C''23 ⊗ C''7

S10,8 = C''30 ⊗ C''14 S10,0 = C''31 ⊗ C''15

The final stage is for decoding M15. It works on the intermediate code word C''' and is derived 
from:

C''' = C'' – [M14 … M10] [G1]

The final stage does not have a checksum generator. The partial code word C''' is a 32-bit wide 
vector. Apply similar majority rules on these bits directly to determine the correct state of M15. 
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Reference 
Design

The reference design consists of two components: the encoder and the decoder. They work 
independently as far as each component concerns. They operate based on the RM(2,5) code 
mentioned in previous section.

Encoder

The encoder takes 16-bit message and encodes into 32-bit code word based on the RM(2,5) 
matrix multiplication. Figure 1 shows a block diagram of the encoder.

Error Diagnostics

To test the system, forced-error functions are part of the encoder. Deliberate bit errors can be 
injected in the code word at the output of the encoder. The FORCE_ERROR pins provide two 
error diagnostics modes.

• Normal Operation Mode
No bit error imposed on the output of the encoder.

• Bit Error Mode
Depending on the mode-type set by the FORCE_ERROR pins (see Pin Descriptions). 
Single, double, triple, and quadruple-bit error injection is supported. In bit error mode, one 
or more consecutive bit(s) is reversed (0 becomes 1 or 0 becomes 1) in the code word on 
the rising edge of the clock. The sequence moves from low order bits to high order bits. 
The sequence is repeated as long as the error mode is active.

Decoder

Figure 2 shows the block diagram of the decoder. The decoder has three decoding stages. 
Each stage is pipelined to maximize performance. It is possible to reduce latency all the way to 
zero by removing pipelines at the expense of performance. The major components are the 
Orthogonal Checksum Generator (OCG) and Majority Logic Decoder (MLD). First stage 
decodes message bit 9 to 0. The second state decodes message bit 14 to 10. The third stage 
decodes message bit 15. With this method, each subsequent stage operates on the decoded 
message bits from the previous immediate stage.

Figure 1:  Encoder Block Diagram
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Design Considerations

Concatenation

Two similar codes can be cascaded to expand the message width. For a 32-bit wide message, 
two RM(2,5) codes are concatenated making C = {X, Y}, where X and Y are independent 
RM(2,5) code. Instead of combining two code words side by side {X0,...,X31,Y0,...,Y31}, it is 
recommended to interleave the code word such that the combined code word is {X0, Y0, X1, 
Y1,...X31,Y31}. This organization can enhance the correcting capability of certain consecutive 
bit errors. A concatenated 32-bit reference design is also available.

Use Models

For single-data rate (SDR) memory, the external memory interface width should be the same 
as the code word width. For double-data rate (DDR) memory applications, the external memory 
interface width can either be the same as the code word width or the message width (half the 
code word width). In the later case, half the code word can be accessed with both rising and 
falling edges at the memory. In both cases, the entire code word is accessed in one cycle on the 
user side.

Figure 2:  Decoder Block Diagram
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Pin Descriptions

Table 3 lists all the encoder and decoder module user interface pins.

Utilization and Performance

Table 4 provides a performance and utilization summary. The design was synthesized using 
the Xilinx Synthesis Tool (XST). Overall performance varies by design. This summary is of the 
16-bit fully-pipelined reference design.

Conclusion This application note discusses the basic principle and operation of second order Reed-Muller 
code. It illustrates the potential use of RM code in correcting multiple errors in high reliability 
memory system. The reference design is available on the Xilinx web site at:

http://www.xilinx.com/bvdocs/appnotes/xapp715.zip

Table  3:  Pin Descriptions

Pin Name In/Out Width Description

CLKIN In Clock input

RESET In Active High reset

FORCE_ERROR In [2:0] Introduces bit error in the encoded data word for test 
purposes.

000 – Normal operation

001 – Inject single bit error

010 – Inject double bit error

011 – Inject triple bit error

100 – Inject quadruple bit error

DATA_P In [15:0] Unencoded input data for the encoder

CODE_IN_P In [31:0] Incoming code word for decoder

CODE_OUT_P Out [31:0] Encoded code word generated from the encoder

MESSAGE Out [15:0] Decoded message from the decoder

ERROR Out [1:0] Error status

00 – No error

01 – Error detected and corrected

10 – Quadruple bit error detected. No correction

11 – Invalid bit error detected

Table  4:  Performance Utilization Summary

Device Utilization Performance

XC2VP7-7 699 slices 184 MHz

XC4VLX15 758 slices TBD
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