
XAPP807 (v1.3) January 17, 2007 www.xilinx.com 1

© 2005–2007 Xilinx, Inc. All rights reserved. All Xilinx trademarks, registered trademarks, patents, and further disclaimers are as listed at http://www.xilinx.com/legal.htm. PowerPC
is a trademark of IBM Inc. All other trademarks and registered trademarks are the property of their respective owners. All specifications are subject to change without notice.

NOTICE OF DISCLAIMER: Xilinx is providing this design, code, or information "as is." By providing the design, code, or information as one possible implementation of this feature,
application, or standard, Xilinx makes no representation that this implementation is free from any claims of infringement. You are responsible for obtaining any rights you may require
for your implementation. Xilinx expressly disclaims any warranty whatsoever with respect to the adequacy of the implementation, including but not limited to any warranties or
representations that this implementation is free from claims of infringement and any implied warranties of merchantability or fitness for a particular purpose.

Summary The Tri-Mode Ethernet MAC (TEMAC) UltraController-II module is a minimal footprint,
embedded network processing engine based on the PowerPC™ 405 (PPC405) processor core
and the TEMAC core embedded within a Virtex™-4 FX Platform FPGA. The TEMAC
UltraController-II module connects to an external PHY through Gigabit Media Independent
Interface (GMII) and Management Data Input/Output (MDIO) interfaces and supports tri-mode
(10/100/1000 Mb/s) Ethernet. Software running from the processor cache reads and writes
through an On-Chip Memory (OCM) interface to two FIFOs that act as buffers between the
different clock domains of the PPC405 OCM and the TEMAC.

The TEMAC UltraController-II module uses minimal resources: one PPC405, one TEMAC, two
Virtex-4 FIFOs, 20 slice flip-flops, and 18 look-up tables (LUTs). Because of the minimal
footprint design, a greater number of FPGA logic resources remain available to the user.

The xapp807.zip file includes software with a web server demonstration to initialize the TEMAC
and to receive and send frames. A web server application running on top of the uIP TCP/IP
stack demonstrates the software drivers. The accompanying reference design includes VHDL,
Verilog, and C source code. The software and hardware for this reference design was
developed and tested using a Xilinx ML403 embedded system development platform. [Ref 1]

Introduction The TEMAC UltraController-II module provides a simple way to receive and send Ethernet
frames. It utilizes a modified version of the UltraController-II design and a TEMAC controller
module, as shown in Figure 1.

Application Note: Virtex-4 FX Family

XAPP807 (v1.3) January 17, 2007

Minimal Footprint Tri-Mode Ethernet MAC
Processing Engine
Author: Jue Sun, Harn Hua Ng, and Peter Ryser

R

Figure 1: TEMAC UltraController-II Module High-Level Block Diagram
X807_01_081005

sys_rst

interrupt

sys_clk

gpio_in[0:31] gpio_out[0:31]

phy_rst

sys_rst_out

jtag

proc_clk

rst_logic

halt_logic

DSOCMBRAMWRDBUS

DSOCMRDADDRVALID

DSOCMWRADDRVALID

UltraController-II

phy_mii_int

RX FIFO Status/Data

tx_fifo_full

dcm_locked tx_fifo_wren

phy_mii_int_n

FIFO Control

TX FIFO Data

rx_fifo_rden

sys_clk

clk_100mhz

sys_rst GMII/MDIO Interface

TEMAC Controller

top_temac_example

www.BDTIC.com/XILINX

http://www.xilinx.com
http:www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm
http://www.xilinx.com/legal.htm

Introduction

XAPP807 (v1.3) January 17, 2007 www.xilinx.com 2

R

Required Hardware/Tools
• Xilinx ML403 development board

• Xilinx ISE

• Xilinx Platform Studio

TEMAC UltraController-II Features
• Supports 10/100/1000 Mb/s network link rates

• Performs auto-negotiation of a network link

• Supports full-duplex operations

• Supplies a Device Control Register (DCR) interface to the TEMAC for configuration

• Uses a simple software driver

• Utilizes minimal logic resources

The design consists of an embedded TEMAC, embedded processor, and minimal glue logic.
The glue logic includes the following:

• A receive (RX) Virtex-4 FIFO to buffer inbound frames from the TEMAC to the PPC405

• A transmit (TX) Virtex-4 FIFO to buffer outbound frames from the PPC405 to the TEMAC

• Control logic to handle read and write operations on the FIFOs

The reference design C code includes functions to:

• Initialize the TEMAC and perform auto-negotiation of the network link

• Receive frames from the RX FIFO

• Send frames to the TX FIFO

All software runs from the 16 KB instruction-side and 16 KB data-side cache memory of the
PPC405.

Data Flow

Figure 2 is a high-level block diagram that shows the flow of data through the TEMAC
UltraController-II module. The numbers in the diagram correspond to the numbered
descriptions that follow.

1. The external PHY receives a frame from the network.

2. The PHY processes the frame and sends it to the TEMAC through the GMII interface.

3. The TEMAC processes the received frame and passes it to the RX FIFO.

4. The RX FIFO buffers the received frame, synchronizes the different clock domains of the
PPC405 and TEMAC, and allows the PPC405 to read the frame.

Figure 2: Data Flow Block Diagram

X807_02_080205

PPC405

TEMAC UltraController Module

RX FIFO

Network

TX FIFO

TEMAC
External

PHY

1234

987

5

6

www.BDTIC.com/XILINX

http://www.xilinx.com

Hardware Overview

XAPP807 (v1.3) January 17, 2007 www.xilinx.com 3

R

5. The PPC405 reads the inbound frame, processes it, and writes an outbound frame to the
TX FIFO.

6. The TX FIFO buffers outbound frames and synchronizes the different clock domains of the
PPC405 and TEMAC.

7. When the logic in the fabric detects that a frame has been written into the TX FIFO, it reads
the TX FIFO and sends the frame to the TEMAC.

8. The TEMAC processes the data and sends the frame to the external PHY through the GMII
interface.

9. The PHY sends the frame to the network.

Hardware
Overview

Figure 3 is a simplified block diagram showing the logic within the TEMAC UltraController-II
black-box design. It does not show the buffers, clocks, and registers that are used to buffer the
inputs and outputs of the TEMAC block.

PPC405

The PPC405 is instantiated within the UltraController-II module. It uses data-side OCM
(DSOCM) and instruction-side OCM (ISOCM) signals to transfer data between the FIFOs. The
PPC405 block’s DCR EMAC signals directly connect to the TEMAC block to enable the DCR
interface between the TEMAC and PPC405. The PHY interrupt is sourced from the external
interrupt port to trigger an interrupt whenever a change in the link is detected by the PHY.

TEMAC

The TEMAC block is initialized in temac_controller.v(.vhd). It consists of a GMII and MDIO
interface to the PHY, a DCR interface to the PPC405, and other signals that interface to the
TX FIFO and RX FIFO. The temac_controller.v(.vhd) file also instantiates a DCM to generate a
125-MHz gtx_clk signal for the TEMAC. For more on TEMAC clocking, refer to UG074. [Ref 2]

Figure 3: TEMAC UltraController-II Black Box Block Diagram

X807_03_081005

Halt
Logic

RX FIFO

tx_fifo_full

sys_clk

rst

DO

rd_err

full

rden

rd_clk

DI

wren

rden

wr_clk

sys_clk

RSTC405RESETSYS

RSTC405RESETCHIP

RSTC405RESETCORE

sys_rst

jtag_tms

jtag_tdi

jtag_tck

Reset
Logic

BRAMISOCMRDDBUS

PLBC405ICURDDBUSReset/Int
Vectors

Hard Wired

Reset/Boot
Code

ISFILL

PPC405

DCR Addr 0x3F1

Instruction Cache
16 KB

Data Cache
16 KB

JTGC405TMS

JTGC405TDI

JTGC405TCK

sys_clk

proc_clk

phy_interrupt

BRAMISOCMCLK

CPMC405CLOCK

EICC405EXTINPUTIRQ

BRAMDSOCMRDDBUS

DBGC405DEBUGHALT

RSTC405RESETSYS

RSTC405RESETCHIP

RSTC405RESETCORE

ISOCMBRAMWRDBUS

DSOCMRDADDRVALID

DSOCMWRADDRVALID

DCR EMAC Signals

sys_rst_out

DSOCMBRAMWRDBUS

C405DBGMSRWE

TX FIFO

TX FIFO RD

rst

DI

wren

wr_clk

full

DO

rd_clk

empty

TEMAC

rx_data

rx_valid

phy_rst

jtag_tdo

jtag_tdoen

sys_rst_out

gpio_out

rx_bad_frame
rx_good_frame
rx_clk

tx_clk

tx_data
tx_valid
tx_ack

tx_valid

tx_ack

DCR Signals

clk

tx_fifo_lock_n

GMII and MDIO
Interface

www.BDTIC.com/XILINX

http://www.xilinx.com

Web Server Application

XAPP807 (v1.3) January 17, 2007 www.xilinx.com 4

R

Signal Descriptions

Table 1 lists the TEMAC UltraController-II signals.

Web Server
Application

This application note uses a web server demonstration based on a uIP TCP/IP stack. An
implementation of the TCP/IP protocol stack, uIP is intended for small 8-bit and 16-bit
microcontrollers. It provides the necessary protocols for Internet communication, with a very
small code footprint and RAM requirements. The uIP code size is on the order of a few
kilobytes, and RAM usage is on the order of a few hundred bytes. [Ref 3]

Table 1: TEMAC UltraController-II Signals

Signal Definition

rx_bad_frame An output of the TEMAC that is asserted for one clock cycle after a frame has
been transmitted on rx_data indicating the transmitted frame is corrupt.

rx_clk The TEMAC receive clock.

rx_data[7:0] The data bus from the TEMAC to the RX FIFO.

rx_fifo_full A signal from the RX FIFO to the PPC405 (through BRAMDSOCMRDDBUS)
that indicates if RX FIFO is overflowing and needs to reset.

rx_fifo_rden The RX FIFO read enable signal that is connected to DSOCMRDADDRVALID
of the PPC405 block.

rx_fifo_rderr A signal from the RX FIFO to the PPC405 (through BRAMDSOCMRDDBUS)
that indicates whether the PPC405 was reading from an empty RX FIFO.

rx_fifo_rst A signal from the PPC405 (through ISOCMBRAMWRDBUS) that resets the RX
FIFO when it is overflowing.

rx_fifo_wren The RX FIFO write enable signal that is asserted when rx_valid,
rx_good_frame, or rx_bad_frame signals are asserted, enabling the valid
rx_data[7:0] to be written.

rx_good_frame An output of the TEMAC that is asserted for one clock cycle after a frame has
been transmitted on rx_data indicating that the transmitted frame is good.

rx_valid An output of the TEMAC that indicates there is valid data on rx_data[7:0].

tx_ack A signal from TEMAC that is asserted for one clock cycle after tx_valid is
asserted and the first byte of the frame is read by TEMAC. It acknowledges to
the TX FIFO that TEMAC is ready to read the rest of the frames.

tx_clk The TEMAC transmit clock.

tx_data[7:0] The data bus from the TX FIFO to the TEMAC.

tx_fifo_empty An output of the TX FIFO that is used by the TX FIFO RD logic to prevent it from
reading TX FIFO when its empty.

tx_fifo_full An output of the TX FIFO that halts the PPC405 when the TX FIFO is full to
prevent overflow.

tx_fifo_lock_n A signal from the PPC405 (through ISOCMBRAMWRDBUS) that indicates to
the TX FIFO that it should not start reading a new frame because the PPC405
is current writing a frame to TX FIFO. It deasserts when PPC405 is writing to
the TX FIFO.

tx_fifo_rden An input to TX FIFO from the TX FIFO RD logic block that enables the TEMAC
to read a frame from the TX FIFO to the TEMAC.

tx_fifo_wren An output of the TX FIFO that is connected to the DSCOMWRADDVALID port
of the PPC405 block.

tx_valid A signal to the TEMAC indicating that rx_data[7:0] is a valid byte in a frame.

www.BDTIC.com/XILINX

http://www.xilinx.com

Software Functions and Routines

XAPP807 (v1.3) January 17, 2007 www.xilinx.com 5

R

Software
Functions and
Routines

This section explains how the software interfaces with the hardware block through a few
functions and routines. Some hardware details are also included to illustrate why software
routines are written this way. All software routines covered in this section are located in the
xapp807.zip file at sw/standalone/src/ethernet/emac.c. A file containing more generic routines
for reference is located at sw/standalone/src/ethernet/original_emac.c.

Initialization

The tapdev_init() initialization function must be called in the beginning of a C program
before calling any other functions or routines. This function first initializes exception handlers in
order for interrupts to work. It then sets TEMAC registers accordingly through the DCR
interface, enabling auto-negotiation and interrupts, and waits for an interrupt from the PHY to
indicate an active network link.

Interrupt

The Ext_Exception_Handler() and configure_emac() interrupt functions must be
included in the software. These two functions are called when an interrupt from the PHY is
asserted. A PHY interrupt indicates that a connection has been established, changed, or shut
down. These functions set the speed for the TEMAC accordingly.

Note: The EMAC registers are accessed through the DCR buses from the PPC405. Although the DCR
buses are not connected in VHDL or Verilog files, they are connected through hard connections within the
FPGA.

Receiving a Frame

In hardware, a 9-bit x 2k RX FIFO is used to buffer the inbound frame. Figure 4 shows the
timing between the TEMAC and the RX FIFO.

Table 2 shows how the rx_valid signal and rx_data[7:0] bus from the TEMAC are written into the
RX FIFO.

To receive a frame:

1. The rx_valid signal is asserted when there is valid data on the rx_data[7:0] bus from the
TEMAC.

Figure 4: RX Timing

X807_04_072505

rx_clk

rx_valid

rx_good_frame

rx_bad_frame

rx_data[7:0]

rx_fifo_wren

DA SA L/T Data

Table 2: RX FIFO Storage Map

DIP 0 DI 7 DI 6 DI 5 DI 4 DI 3 DI 2 DI 1 DI 0

rx_valid rx_data[7] rx_data[6] rx_data[5] rx_data[4] rx_data[3] rx_data[2] rx_data[1] rx_data[0]

www.BDTIC.com/XILINX

http://www.xilinx.com

Software Functions and Routines

XAPP807 (v1.3) January 17, 2007 www.xilinx.com 6

R

2. The rx_good_frame and rx_bad_frame signals are asserted for one clock cycle after a
frame has been transmitted on rx_data[7:0].

3. The rx_fifo_wren signal is asserted when rx_valid, rx_good_frame, or rx_bad_frame
signals are asserted. This writes all the valid rx_data[7:0] and, at the end, a value of all
zeros into the RX FIFO. A falling edge on rx_valid in software, therefore, indicates the end
of a frame. The design does not differentiate a good frame from a bad frame in the fabric,
thus it relies on the software to check whether the frame is corrupt.

The software can read from the RX FIFO at any time during its execution using the following
instruction:

input = lwz(FIFOPORT);

The lwz() function in xpseudo_asm.h is used to read from the OCM. FIFOPORT is the
address map for the OCM port. This function allows the user to read the current data in the
RX FIFO and all the other signals on the BRAMDSOCMRDBUS. DSOCMRDADDRVALID on
the PPC405 block is asserted automatically when the input = lwz(FIFOPORT) instruction
is executed.

The following routine reads the frame in the RX FIFO into an array specified by uip_buf[]
and returns the length of the frame.

If the network traffic is received at a faster rate than the rate at which frames are retrieved from
the RX FIFO, the RX FIFO overflows. Upon overflow, the software resets the RX FIFO and
frames are lost. If the RX FIFO is reset in the middle of writing a frame, then the next frame that
the software retrieves will not be complete. This design relies on the uIP TCP/IP stack to resend
lost frames. A checksum discards incomplete frames. Table 5, page 13 shows how resetting
the RX FIFO is affected by different utilization levels of the bandwidth.

Sending a Frame

In hardware, a 9-bit x 2k TX FIFO is used to buffer the outbound frame. Figure 5, page 7 shows
the timing between the TEMAC and the TX FIFO.

int tapdev_read(){
Xuint32 input;
u16_t x, time_out=0;
do {
 if(time_out>65530){return 0;}//The webserver application requires the routine to timeout and return 0
when there is no frame in RX FIFO for a long time
 x=0; //Initialize frame byte counter
 time_out++; //Increment the time out counter whenever there
are no frames to read in RX FIFO
 do { //This is the loop to read a frame
 input = lwz(FIFOPORT); //read from RX FIFO
 uip_buf[x] = (u8_t)(input & RX_DATA_FILTER); //get the data portion of input
 if (!(input & RX_EMPTY_FILTER)) {x++;} //increment the byte counter if PPC were not
reading from an empty RX FIFO
 } while (((input & RX_VALID_FILTER) || (input & RX_EMPTY_FILTER&& x!=0)) && (!(input &
RX_FULL_FILTER)));
 //stop looping if no frame is in RX FIFO,
 //or if RX FIFO is full, or if RX VALID
 //is not high anymore indicating end of a frame
 if ((input & RX_FULL_FILTER)) //If RX FIFO was full
 {reset_rx_fifo();} //Reset the RX FIFO
 } while ((input & RX_FULL_FILTER) || (x==0)); //Loop again if RX FIFO was full or if RX FIFO
did not have a frame to be read
return (x-1); //Return the length of the frame
}

www.BDTIC.com/XILINX

http://www.xilinx.com

Software Functions and Routines

XAPP807 (v1.3) January 17, 2007 www.xilinx.com 7

R

Table 3 shows the TX FIFO storage map. The DI of TX FIFO is connected to the
DSOCMBRAMWRDBUS port of the PPC405.

To send a frame:

1. The tx_valid signal is asserted by the TX FIFO while sending a frame. It must be asserted
with the first byte of the frame until tx_ack is asserted by the TEMAC.

2. When tx_ack is asserted by the TEMAC, TX FIFO must send the second byte of the frame
to the TEMAC.

3. After tx_ack is asserted, the TX FIFO sends one byte on each tx_clk cycle to the TEMAC
frame, asserting the tx_valid until the last byte of the frame is sent.

This application note does not detail the logic between the TX FIFO and the TEMAC, however,
Figure 6 shows how the tx_fifo_rden signal is generated.

If the network traffic is transmitted at a faster rate than the rate at which frames are sent to the
TX FIFO, the TX FIFO underflows. To prevent underflow, the user must call the
lock_tx_fifo() function. With the TX FIFO locked, the TEMAC will not begin to read the

Figure 5: TX Timing

DA SA L/T Data

X807_05_072505

tx_clk

tx_valid

tx_ack

tx_fifo_rden

tx_data[7:0]

tx_fifo_lock_n

Table 3: TX FIFO Storage Map

DIP 0 DI 7 DI 6 DI 5 DI 4 DI 3 DI 2 DI 1 DI 0

tx_valid tx_data[7] tx_data[6] tx_data[5] tx_data[4] tx_data[3] tx_data[2] tx_data[1] tx_data[0]

Figure 6: TX FIFO Read Logic

tx_valid

tx_ack

tx_clk

tx_fifo_lock_n

tx_fifo_empty

tx_fifo_full

DQ

ENQ

RSTD

tx_fifo_rden

X807_06_080105

1

www.BDTIC.com/XILINX

http://www.xilinx.com

Clocks

XAPP807 (v1.3) January 17, 2007 www.xilinx.com 8

R

frame that the PPC405 is currently writing, thus preventing the TX FIFO from emptying in the
middle of sending a frame to the TEMAC.

In software, the following instruction is used to write a byte into the TX FIFO:

stw(FIFOPORT, ((Xuint32) (frame[x])));

The stw() function is used to write to the OCM bus in xpseudo_asm.h. This function allows
the PPC405 to write the value of frame[x] to the TX FIFO while tx_valid is asserted (Logic 1).
To send the frame, the user must write the first byte of the frame twice. To end the frame and
cause tx_valid to be deasserted (Logic 0), the user must write 0x00000100 twice. The user
then calls unlock_tx_fifo() to allow the TEMAC to start reading the outbound frame.

The function used to send data in the web server demonstration is shown as below. It sends
data from two buffers, uip_buf[] and uip_appdata[], with a length of uip_len.

void tapdev_send(){
u16_t x, first_array, second_array;
lock_tx_fifo(); // lock fifo so that TEMAC will not read from it while
it’s writing a frame
stw(FIFOPORT, ((Xuint32) (uip_buf[0]))); // store the first byte
first_array = UIP_LLH_LEN + 40; // this is the length of the first array, uip_buf[]
second_array = uip_len - UIP_LLH_LEN-40; // this is the length of data in the second array,
uip_appdata[]
if(uip_len > first_array) { // if the frame to be sent exists in both buffers
 for(x = 0; x < first_array; ++x) { // send the data in the first array, uip_buf[] first
 stw(FIFOPORT, ((Xuint32) (uip_buf[x])));
 }
 for(x=0; x < second_array; ++x) { // then send the data in the second array, uip_appdata[]
 stw(FIFOPORT, ((Xuint32) (uip_appdata[x])));
 }
} else { // if the frame is short enough to be in just the uip_buf[]
 for(x = 0; x < uip_len; ++x) { // send the frame from just uip_buf[]
 stw(FIFOPORT, ((Xuint32) (uip_buf[x])));
 }
}
stw(FIFOPORT, 0x00000100); // two dummy writes into TX FIFO with tx_valid being 0
stw(FIFOPORT, 0x00000100);
unlock_tx_fifo(); // unlock FIFO to enable TEMAC to start reading this frame
}

Clocks Table 4 lists the clocks used in the TEMAC UltraController-II module. See UG018 and UG074
listed in “References,” page 15 for additional details on clocking requirements.

Table 4: TEMAC UltraController-II Clocking

Clock Name Default Frequency Source Used By Permitted
Range

sys_clk_in 100 MHz Generated
onboard

Various DCMs N/A

sys_clk 150 MHz DCM TEMAC logic
and OCM
interface

100-200 MHz

proc_clk 300 MHz DCM Processor
block

100-350 MHz

gtx_clk 125 MHz DCM TEMAC Fixed

rx_clk 1.25 MHz @ 10 Mb/s
12.5 MHz @ 100 Mb/s
125 MHz @ 1000 Mb/s

TEMAC TEMAC logic N/A

www.BDTIC.com/XILINX

http://www.xilinx.com/bvdocs/userguides/ug074.pdf
http://www.xilinx.com/bvdocs/userguides/ug018.pdf
http://www.xilinx.com

Quick Start

XAPP807 (v1.3) January 17, 2007 www.xilinx.com 9

R

Quick Start This Quick Start section provides step-by-step instructions for bringing up the TEMAC
UltraController-II module and for demonstrating the uIP web server application. Pregenerated
files are provided in the demos folder if the user wishes to bypass the steps for generating
binary files.

Ensure that ISE and EDK are properly installed before proceeding. Extract the xapp807.zip file
to a local directory. Check the readme.txt for required versions of the Xilinx ISE and EDK tool
sets.

Generating a Hardware Bitstream
1. In ISE, launch Project Navigator and browse to the projnav folder.

2. Select File → Open Project → top_temac_example_verilog.ise.

3. Generate a bitstream for top_temac_example.v(.vhd):

a. In the Sources in Project window, right-click top_temac_example to select the module.

b. In the Processes for Source window, select Generate Programming File →
<right-click> → Rerun All.

c. The generated NCD file appears in the projnav folder.

Generating a Software ELF in Xilinx Platform Studio

The xapp807.zip includes files for generating an ELF. The drivers adopted for the uIP
application are located in sw/standalone/src/ethernet/emac.c. A general software driver is
located in sw/standalone/src/ethernet/emac_original.c.

1. Launch Xilinx Platform Studio (XPS) and select File → Open Project →
temac_ultracontroller_module.xmp.

2. Select File → Open → sw/standalone/src/uip-0.9/unix/uipopt.h and specify the desired
IP (line 132) and MAC address (line 182) for the ML403 board.

Note: The first three bytes of the IP address should match the IP address of the network to which
the board is to be connected. The default IP is 192.168.1.4.

3. In the Applications window, right-click on the project webserver and select Build project
to generate an ELF executable.

Both the hardware bitstream and software ELF file are now ready for generating an RBT or
MCS file.

tx_clk 1.25 MHz @ 10 Mb/s
12.5 MHz @ 100 Mb/s
125 MHz @ 1000 Mb/s

TEMAC TEMAC logic N/A

Notes:
1. sys_clk and proc_clk must be integer multiples.
2. The integer multiple of the two clocks must be specified in the uc2.v(.vhd) module using the PPC405 ports

DSCNTLVALUE and ISCNTLVALUE. For details, refer to UG018.
3. DCMs are used to generate gtx_clk, sys_clk, and proc_clk.
4. DCMs for sys_clk and proc_clk are instantiated in top_temac_example.v; the DCMs for gtx_clk is

instantiated in temac_controller.v.

Table 4: TEMAC UltraController-II Clocking (Continued)

Clock Name Default Frequency Source Used By Permitted
Range

www.BDTIC.com/XILINX

http://www.xilinx.com

Quick Start

XAPP807 (v1.3) January 17, 2007 www.xilinx.com 10

R

Generating RBT and MCS Files

Use the top_temac_example.ncd file and executable ELF file and generate an RBT file or an
MCS file. Refer to XAPP719 for more information on the generation of these files and cache
configuration using the USR_ACCESS_VIRTEX4 register.

1. Use a command window and browse to the generate_rbt_mcs folder.

2. Using a command line, type:

xilperl genmcs.pl ../projnav/top_temac_example.ncd
../ppc405_0/code/executable.elf demo

This command generates two files:

♦ The demo.mcs is used if programming a PROM to load the bitstream

♦ The demo.rbt file is used if programming by way of a JTAG interface

Setting Up the Board and Loading the Bitstream

The uIP application provided with the TEMAC UltraController-II module targets a Virtex-4
ML403 board based on a Virtex-4 FX12 FPGA. The target board configures the FPGA and
loads the cache in a single step.

1. Connect power to the target board.

2. Connect a Xilinx Parallel Cable IV (PC4) JTAG cable between the host computer and target
board.

3. Connect a cable from the target board to the host computer or the network.

a. Use a crossover cable if connecting the board to a computer.

b. Use an Ethernet cable if connecting the board to a network.

c. Make sure that the network card on the computer is set to auto-negotiation.

4. From the ISE project's Process for Source window, select Configure Device (iMPACT) →
Run. Assign demo.mcs to the PROM or assign demo.rbt to the FPGA to program the board
in Boundary-scan mode. The user must set Startup Clock (FPGA) in Edit → Preferences
→ iMPACT Configuration Preferences to Ignore Setting.

Initially, the LCD shows that the board is waiting for a connection. The board should then
make a connection and display the connection speed on the LCD. Figure 7, page 11 shows
how a working board should look after a connection has been established.

www.BDTIC.com/XILINX

http://www.xilinx.com

Quick Start

XAPP807 (v1.3) January 17, 2007 www.xilinx.com 11

R

5. Try pinging the ML403 board after connecting. In a Web browser, type the IP address of the
ML403 board to see the sample web server page as shown in Figure 8.

Note: This demonstration was tested in Internet Explorer v6.0 and Firefox v1.0.1.

Figure 7: ML403 Target Board Running a Network Connection

Figure 8: The uIP Web Server Welcome Page

X807_07_080205

X807_08_081105

www.BDTIC.com/XILINX

http://www.xilinx.com

TEMAC Configuration

XAPP807 (v1.3) January 17, 2007 www.xilinx.com 12

R

(Optional) Exporting from EDK to ISE
To change uc2.mhs and convert it to uc2.v, in XPS click Tools → Generate Netlist. A new
uc2.v is generated in the hdl folder.

TEMAC
Configuration

The Ethernet wrapper is generated from the CORE Generator™ tool, with the settings shown
in Figure 9 and Figure 10. See UG074 for more information on the embedded tri-mode Ethernet
MAC.

Figure 9: Embedded Tri-Mode Ethernet MAC Wrapper (Page 1)

Figure 10: Embedded Tri-Mode Ethernet MAC Wrapper (Page 2)

www.BDTIC.com/XILINX

http://www.xilinx.com/bvdocs/userguides/ug074.pdf
http://www.xilinx.com

Performance

XAPP807 (v1.3) January 17, 2007 www.xilinx.com 13

R

Performance The performance test was done with a SmartBits 600 (SMB-600) network performance
analysis system. The network speed was measured by sending a ping request (60 bytes) to the
ML403 board with the software uIP loaded.

The display indicates % Utilization, which shows the percentage of the bandwidth that is
being used. For an example, 100% utilization means sending frames back to back; 50%
utilization means sending a frame and waiting for a period of time equivalent to the time it took
to send the frame.

Table 5 summarizes the network bandwidth utilization at speeds of 1000, 100, and 10 Mb/s.

Resource
Utilization

Table 6 shows the resource utilization of the TEMAC UltraController-II module implemented in
an XC4VFX12 device.

Table 5: Bandwidth Utilization

1000 Mb/s 100 Mb/s 10 Mb/s

Number of frames that can be handled in 100%
utilization before the RX FIFO resets

36 310 Infinite

Max percent utilization without causing the RX FIFO to
reset

9% 89% 100%

Percent of frames lost at 5% utilization 0% 0% 0%

Percent of frames lost at 10% utilization 30% 0% 0%

Percent of frames lost at 25% utilization 68% 0% 0%

Percent of frames lost at 50% utilization 84% 0% 0%

Percent of frames lost at 75% utilization 89% 0% 0%

Percent of frames lost at 100% utilization 92% 10% 0%

Notes:
1. Utilization numbers based on settings of proc_clk running at 350 MHz and sys_clk running at 175 MHz.

Table 6: Resource Utilization on an XC4VFX12 Device

Resource Used Available % Utilization

Slice Flip-Flops 20 10,944 <1%

LUTs (4-input) 18 10,944 <1%

Logic Distribution

Occupied Slices 49 5,472 <1%

Total LUTs (4-input) 40 10,944 <1%

Bonded IOBs 41 320 12%

BUFG/BUFGCTRLs 8 32 25%

FIFO16/RAMB16s 2 36 5%

DCM_ADVs 3 4 75%

PPC405_ADVs 1 1 100%

EMACs 1 1 100%

Notes:
1. The table does not include utilization numbers for cache loading through the USR_ACCESS_VIRTEX4

register.

www.BDTIC.com/XILINX

http://www.xilinx.com

Reference Design

XAPP807 (v1.3) January 17, 2007 www.xilinx.com 14

R

Reference
Design

Figure 11 lists some of the reference design files contained in the zip file located at
http://www.xilinx.com/bvdocs/appnotes/xapp807.zip. Figure 11 shows the Verilog structure
only, although the VHDL structure is nearly identical.

xapp807/
 | -- temac_ultracontroller_module.xmp (XPS project file)
 | -- generate_rbt_mcs/
 | | -- genmcs (perl script used to generate .rbt and .mcs files from .mcd and .elf files)
 | -- hdl/
 | | --uc2.v (Verilog file with UltraController-II module, instantiating PPC405 block)
 | -- implementation/ (black boxes for hardware modules)
 | -- pcores/ (pcores used for the design)
 | -- ppc405_0/
 | | -- code/
 | | | -- executable.elf (pre-generated software executable for uIP)
 | -- projnav/
 | | -- top_temac_example.v (Top demo module for TEMAC UltraController-II Module)
 | | -- top_temac_example_ML403.ucf (Constraints File)
 | | -- temac.v (module containing TEMAC instantiation)
 | | -- top_temac_example.ise (Project Navigator project file)
 | | -- temac_controller.v (verilog file with temac_controller module, instantiating TEMAC and
 | | its supporting logic)
 | | --uar_load.v (verilog file with uar_load module used for configuring the cache through the
 | | USR_ACCESS_VIRTEX4)
 | -- sw/
 | | -- standalone/
 | | | -- linker_scripts/
 | | | | -- uc2_linker_script (linker script file)
 | | | -- src/
 | | | | -- common/
 | | | | | -- crt0.S
 | | | | | -- gpio.c (gpio driver)
 | | | | | -- lcs_ml403.c (LCD driver)
 | | | | | -- sim_sleep.c (timer)
 | | | | | -- xexception_l.c (interrupt handlers)
 | | | | | -- xvectors.S
 | | | | -- ethernet/ (low-level drivers)
 | | | | | -- emac.c (software handler for uIP)
 | | | | | -- emac_original.c (software handler for other applications)
 | | | | | -- xgpemac_l (low-level driver for accessing EMAC registers)
 | | | | -- uip-0.9/ (source codes from uIP software)
 | | | | | -- apps/
 | | | | | |-- httpd/
 | | | | | | | -- cgi.c
 | | | | | | | -- cgi.h
 | | | | | | | -- fs.c
 | | | | | | | -- fs.h
 | | | | | | | -- fsdata.c
 | | | | | | | -- fsdata.h
 | | | | | | | -- httpd.c
 | | | | | | | -- httpd.h
 | | | | | | | -- makefsdata (perl file that generates fsdata.c
 | | | | | | | from html
 | | | | | | | files in fs folder)
 | | | | | | | -- fs/ (folder containing html templates
 | | | | | | | for the web server)
 | | | | | -- unix/
 | | | | | |-- main.c
 | | | | | |-- uip_arch.c
 | | | | | |-- uipopt.h
 | | | | | -- uip /
 | | | | | |-- uip.h
 | | | | | |-- uip.c
 | | | | | |-- uip_arch.h
 | | | | | |-- uip_arp.c
 | | | | | |-- uip_arp.h
 | -- demos/
 | | -- executable.elf (pregenerated software ELF file)
 | | -- executable.bin (pregenerated software BIN file)
 | | -- top_temac_example.ncd (pregenerated hardware NCD file)
 | | -- demo.rbt (pregenerated RBT file for programming FPGA through JTAG)
 | | -- demo.mcs (pregenerated MCS file for programming PROM)

Figure 11: Reference Design Directory and Files

www.BDTIC.com/XILINX

http://www.xilinx.com/bvdocs/appnotes/xapp807.zip
http://www.xilinx.com

Conclusion

XAPP807 (v1.3) January 17, 2007 www.xilinx.com 15

R

Conclusion The TEMAC UltraController-II module provides a convenient and inexpensive way of adding
Ethernet functionality to a design. It uses very few FPGA resources, and the software can be
run from the embedded PPC405 caches. Simple interfaces allow a shorter user development
time. The web server application is used to demonstrate the design, but other solutions can be
derived from these techniques.

References 1. Virtex-4 ML403 embedded development platform website
http://www.xilinx.com/ml403

2. UG074, Virtex-4 Embedded Tri-Mode Ethernet MAC User Guide
http://www.xilinx.com/bvdocs/userguides/ug074.pdf

3. For information about the uIP web server software used in this application note, see
http://www.sics.se/~adam/uip/

4. UG018, PowerPC™ 405 Processor Block Reference Guide
http://www.xilinx.com/bvdocs/userguides/ug018.pdf

5. UG071, Virtex-4 Configuration Guide
http://www.xilinx.com/bvdocs/userguides/ug071.pdf

6. UG082, ML40x Reference Design User Guide
http://www.xilinx.com/bvdocs/userguides/ug082.pdf

7. XAPP571, DEBUGHALT Controller for PowerPC Boot and Reset Operations
http://www.xilinx.com/bvdocs/appnotes/xapp571.pdf

8. XAPP575, UltraController-II: Minimal Footprint Embedded Processing Engine
http://www.xilinx.com/bvdocs/appnotes/xapp575.pdf

9. XAPP719, PowerPC Cache Configuration Using the USR_ACCESS_VIRTEX4 Register
http://www.xilinx.com/bvdocs/appnotes/xapp719.pdf

10. For tutorials covering software ELF generation, see
http://www.xilinx.com/ultracontroller

11. For information on the SmartBits 600 chassis, see
http://www.spirentcom.com/documents/611.pdf

Revision
History

The following table shows the revision history for this document.

Date Version Revision

08/15/05 1.0 Initial Xilinx release.

10/04/05 1.0.1 Minor correction to step 1 of “Generating a Software ELF in Xilinx
Platform Studio,” page 9. Added reference to XAPP719.

01/17/06 1.1 Updated to ISE 7.1i Service Pack 4.

03/02/06 1.2 • Updated to ISE 8.1.02i and EDK 8.1.01i.
• Added clock feedbacks on DCM1 and DCM2.
• Removed sys_rst_out signal from top-level port list in

top_temac_example.vhd.
• Added script to convert ELF files to binary files on all platforms.

01/17/07 1.3 Updated xapp807.zip. See readme.txt for details.

www.BDTIC.com/XILINX

http://www.xilinx.com/bvdocs/userguides/ug018.pdf
http://www.xilinx.com/bvdocs/userguides/ug071.pdf
http://www.xilinx.com/bvdocs/userguides/ug074.pdf
http://www.xilinx.com/bvdocs/userguides/ug082.pdf
http://www.xilinx.com/bvdocs/appnotes/xapp571.pdf
http://www.xilinx.com/bvdocs/appnotes/xapp575.pdf
http://www.xilinx.com/ml403
http://www.xilinx.com/ultracontroller
http://www.sics.se/~adam/uip/
http://www.spirentcom.com/documents/611.pdf
http://www.xilinx.com/bvdocs/appnotes/xapp719.pdf
http://www.xilinx.com

	Minimal Footprint Tri-Mode Ethernet MAC Processing Engine
	Summary
	Introduction
	Required Hardware/Tools
	TEMAC UltraController-II Features
	Data Flow

	Hardware Overview
	PPC405
	TEMAC
	Signal Descriptions

	Web Server Application
	Software Functions and Routines
	Initialization
	Interrupt

	Receiving a Frame
	Sending a Frame

	Clocks
	Quick Start
	Generating a Hardware Bitstream
	Generating a Software ELF in Xilinx Platform Studio
	Generating RBT and MCS Files
	Setting Up the Board and Loading the Bitstream
	(Optional) Exporting from EDK to ISE

	TEMAC Configuration
	Performance
	Resource Utilization
	Reference Design
	Conclusion
	References
	Revision History

