CN-0217

Circuits

from the Lab"
Reference Circuits

Circuits from the $L a b^{T m}$ reference circuits are engineered and tested for quick and easy system integration to help solve today's analog, mixed-signal, and RF design challenges. For more information and/or support, visitwww.analog.com/CN0217.

$\mid 2$	Devices Connected/Referenced
AD5933	1 MSPS, 12-Bit Impedance Converter, Network Analyzer
AD5934	250kSPS, 12-Bit Impedance Converter, Network Analyzer
AD8606	Precision Low Noise Dual CMOS Op Amp

High Accuracy Impedance Measurements Using 12-Bit Impedance Converters

EVALUATION AND DESIGN SUPPORT

Circuit Evaluation Boards
CN-0217 Circuit Evaluation Board
(EVAL-CN0217-EB1Z)
Design and Integration Files
Schematics, Layout Files, Bill of Materials

CIRCUIT FUNCTION AND BENEFITS

The AD5933 and AD5934 are high precision impedance converter system solutions that combine an on-chip programmable frequency generator with a 12 -bit, 1 MSPS (AD5933) or 250 kSPS (AD5934) analog-to-digital converter (ADC). The tunable frequency generator allows an external complex impedance to be excited with a known frequency.
The circuit shown in Figure 1 yields accurate impedance measurements extending from the low ohm range to several hundred $\mathrm{k} \Omega$ and also optimizes the overall accuracy of the AD5933/AD5934.

Figure 1. Optimized Signal Chain for Impedance Measurement Accuracy (Simplified Schematic, All Connections and Decoupling Not Shown)

Rev. 0

Circuits from the Lab ${ }^{T m}$ circuits from Analog Devices have been designed and built by Analog Devices engineers. Standard engineering practices have been employed in the design and construction of each circuit, and their function and performance have been tested and verified in a lab environment at room temperature. However, you are solely responsible for testing the circuit and determining its suitability and applicability for your use and application. Accordingly, in no event shail Analog Devices be liable for direct, indirect, special, incidental, consequential or punitive damages due to any cause whatsoever connected to the use of any Circuits from the Lab circuits. (Continued on last page)

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A
Tel: 781.329.4700 www.analog.com
Fax: 781.461.3113

CIRCUIT DESCRIPTION

The AD5933 and AD5934 have four programmable output voltage ranges; each range has an output impedance associated with it. For example, the output impedance for a 1.98 V p-p output voltage is typically 200Ω (see Table 1).

Table 1. Output Series Resistance, Rout, vs. Excitation Range for VDD = 3.3 V Supply Voltage,

Range	Output Excitation Amplitude	Output Resistance, Rout
Range 1	$1.98 \mathrm{Vp-p}$	200Ω typ
Range 2	$0.97 \mathrm{Vp-p}$	$2.4 \mathrm{k} \Omega$ typ
Range 3	$0.383 \mathrm{Vp-p}$	$1.0 \mathrm{k} \Omega$ typ
Range 4	$0.198 \mathrm{Vp-p}$	600Ω typ

This output impedance impacts the impedance measurement accuracy, particularly in the low $\mathrm{k} \Omega$ range, and should be taken into account when calculating the gain factor. Please refer to the AD5933 or AD5934 data sheets for more details on gain factor calculation.

A simple buffer in the signal chain prevents the output impedance from affecting the unknown impedance measurement. A low output impedance amplifier should be selected with sufficient bandwidth to accommodate the AD5933/AD5934 excitation frequency. An example of the low output impedance achievable is shown in Figure 2 for the AD8605/AD8606/AD8608 family of CMOS op amps. The output impedance for this amplifier for an A_{V} of 1 is less than 1Ω up to 100 kHz , which is the maximum operating range of the AD5933/AD5934.

Figure 2. Output Impedance of AD8605/AD8606/AD8608

Matching the DC Bias of Transmit Stage to Receive Stage

The four programmable output voltage ranges in the AD5933/ AD5934 have four associated bias voltages (Table 2). For example, the 1.98 V p-p excitation voltage has a bias of 1.48 V . However, the current-to-voltage (I-V) receive stage of the AD5933/AD5934 is set to a fixed bias of VDD/2 as shown in Figure 1. Thus, for a 3.3 V supply, the transmit bias voltage is 1.48 V , while the receive bias voltage is $3.3 \mathrm{~V} / 2=1.65 \mathrm{~V}$. This potential difference polarizes the impedance under test and can cause inaccuracies in the impedance measurement.
One solution is to add a simple high-pass filter with a corner frequency in the low Hz range. Removing the dc bias from the transmit stage and re-biasing the ac signal to VDD/2 keeps the dc level constant throughout the signal chain.

Table 2. Output Levels and Respective DC Bias for VDD = 3.3 V Supply Voltage

Range	Output Excitation Amplitude	Output DC Bias Level
1	$1.98 \mathrm{~V} p-\mathrm{p}$	1.48 V
2	$0.97 \mathrm{~V} \mathrm{p-p}$	0.76 V
3	0.383 V p-p	0.31 V
4	$0.198 \mathrm{~V} \mathrm{p-p}$	0.173 V

Selecting an Optimized I-V Buffer for the Receive Stage

The current-to-voltage (I-V) amplifier stage of the AD5933/AD5934 can also add minor inaccuracies to the signal chain. The I-V conversion stage is sensitive to the amplifier's bias current, offset voltage, and CMRR. By selecting the proper external discrete amplifier to perform the I-V conversion, the user can choose an amplifier with lower bias current and offset voltage specifications along with excellent CMRR, making the I-V conversion more accurate. The internal amplifier can then be configured as a simple inverting gain stage.

Selection of resistor R_{FB} still depends on the gain through the system as described in the AD5933/AD5934 data sheet.

Optimized Signal Chain for High Accuracy Impedance Measurements

Figure 1 shows a proposed configuration for measuring low impedance sensors. The ac signal is high-pass filtered and rebiased before buffering with a very low output impedance amplifier. The I-V conversion is completed externally before the signal returns to the AD5933/AD5934 receive stage. Key specifications that determine the required buffer are very low output impedance, single-supply capability, low bias current, low offset voltage, and excellent CMRR performance. Some suggested parts are the AD4528-1, AD8628/AD8629, AD8605, and AD8606. Depending on board layout, use a single-channel or dual-channel amplifier. Use precision 0.1% resistors for both the biasing resistors ($50 \mathrm{k} \Omega$) and gain resistors ($20 \mathrm{k} \Omega$ and R_{FB}) to reduce inaccuracies.

CIRCUIT EVALUATION AND TEST

The schematic in Figure 1 was developed to improve impedance measurement accuracy, and some example measurements were taken. The AD8606 dual channel amplifier buffers the signal on the transmit path and converts the receive signal from current to voltage. For the three examples shown, the gain factor is calculated for each frequency increment to remove frequency dependent errors. A complete design package including schematics, bill of materials, layout, and Gerber files is available for this solution at http://www.analog.com/CN0217-DesignSupport. The software used is the same software that is available with evaluation boards and is accessible from the AD5933 and AD5934 product pages.

Example 1: Low Impedance Range

Table 1. Low Impedance Range Setup for VDD $=3.3 \mathrm{~V}$ Supply Voltage

Parameter	Value
Vp-p	1.98 V (Range 1)
Number of Settling Time Cycles	15
MCLK	16 MHz
RCAL	20.1Ω
RfB	20.0Ω
Excitation Frequency Range	30 kHz to 30.2 kHz
Unknown Impedances	$\mathrm{R} 1=10.3 \Omega$,
	$\mathrm{R} 2=30.0 \Omega$,
	$\mathrm{C} 3=1 \mu \mathrm{~F}\left(\mathrm{Z}_{\mathrm{C}}=5.3 \Omega\right.$ at
	$30 \mathrm{kHz})$

The results of the low impedance measurements are shown in Figure 3, Figure 4, and Figure 5. Figure 5 is for the 10.3Ω measurement and is shown on an expanded vertical scale.
The accuracy achieved is very much dependent on how large the unknown impedance range is relative to the calibration resistor, $\mathrm{R}_{\text {CAL }}$. Therefore, in this example, the unknown impedance of 10.3Ω measured 10.13Ω, an approximate 2% error. Choosing an $\mathrm{R}_{\mathrm{CAL}}$ closer to the unknown impedance achieves a more accurate measurement; that is, the smaller the unknown impedance range is centered around $\mathrm{R}_{\text {CAL }}$ is, the more accurate the measurement. Consequently, for large unknown impedance ranges, it is possible to switch in various $\mathrm{R}_{\mathrm{CAL}}$ resistors to break up the unknown impedance range using external switches. The Ron error of the switch is removed by calibration during the R $\mathrm{RAL}^{\mathrm{AL}}$ gain factor calculation. Using a switch to select various R_{FB} values can optimize the dynamic range of the signal seen by the ADC.
Also note that to achieve a wider range of measurements a 200 mV p-p range was used. If the unknown Z is a small range, a larger output voltage range can be used to optimize the ADC dynamic range.

Figure 3. Measured Low Impedance Magnitude Results

Figure 4. Measured Low Impedance Phase Results

Figure 5. Measured 10.3 Ω Magnitude Results (Expanded Scale)

Example 2: $\mathbf{k} \Omega$ Impedance Range

Using an $\mathrm{R}_{\mathrm{CAL}}$ of $99.85 \mathrm{k} \Omega$, a wide range of unknown impedances were measured according to the setup conditions listed in Table 2. Figure 6 to Figure 10 document accuracy results. To improve the overall accuracy, select an R $\mathrm{R}_{\mathrm{CAL}}$ value closer to the unknown impedance. For example, in Figure 9, an R $\mathrm{R}_{\mathrm{CAL}}$ closer to the Z_{C} value of $217.5 \mathrm{k} \Omega$ is required. If the unknown impedance range is large, use more than one $\mathrm{R}_{\mathrm{CAL}}$ resistor.

Table 2. $\mathrm{k} \Omega$ Impedance Range Setup for $\mathrm{VDD}=3.3 \mathrm{~V}$ Supply Voltage

Figure 6. Magnitude Result for $Z_{C}=47 \mathrm{pF}, R_{C A L}=99.85 \mathrm{k} \Omega$

Figure 7. Phase Result for $Z_{C}=47 p F, R_{C A L}=99.85 \mathrm{k} \Omega$

Figure 8. $Z_{C}=8.21 \mathrm{k} \Omega, R_{C A L}=99.85 \mathrm{k} \Omega$

Figure $9 . Z_{C}=217.25 \mathrm{k} \Omega, R_{C A L}=99.85 \mathrm{k} \Omega$

Figure 10. Magnitude Results for Example 2: R1, R2, R3, C5, C6

Example 3: Parallel $R-C(R \| C)$ Measurement

An $\mathrm{R} \| \mathrm{C}$ type measurement was also made using the configuration, using an Rcal of $1 \mathrm{k} \Omega$, an R of $10 \mathrm{k} \Omega$, and a C of 10 nF , measured across a frequency range of 4 kHz to 100 kHz . The magnitude and phase results versus ideal are plotted in Figure 11 and Figure 12.

Table 3. $\mathrm{R}|\mid \mathrm{C}$ Impedance Range Setup for VDD $=3.3 \mathrm{~V}$ Supply Voltage

Parameter	Value	
Vp-p	0.383 V (Range 3)	
Number of Settling Time Cycles	15	
MCLK	16 MHz	
Rcal	$1 \mathrm{k} \Omega$	
RfB	$1 \mathrm{k} \Omega$	
Excitation Frequency Range	4 kHz to 100 kHz	
Unknown Impedance $\mathrm{R} \\| \mathrm{C}$	$\mathrm{R}=10 \mathrm{k} \Omega$	
	$\mathrm{C}=10 \mathrm{nF}$	

Figure 12. Phase Results for $Z_{C}=10 \mathrm{k} \Omega \| 10 \mathrm{nF}, R_{C A L}=1 \mathrm{k} \Omega$

Setup and Test

The EVAL-CN0217-EB1Z software is the same as that used on the EVAL-AD5933EBZ application board. Please refer to the technical note available on the CD provided for details on the board setup. Note that there are alterations to the schematic. Link connections on the EVAL-CN0217-EB1Z board are listed below in Table 4. Also note that the location for RFB is located at R3 on the evaluation board, and the location for Zunenows is C4.

Table 4. Link Connections for EVAL-CN0217-EB1Z

Link Number	Default Position
LK1	Open
LK2	Open
LK3	Open
LK4	Insert
LK5	Insert
LK6	A

COMMON VARIATIONS

Other op amps can be used in the circuit, such as the AD4528-1, AD8628, AD8629, AD8605, and the AD8608.

Switching Options for System Applications

For this particular circuit, the $Z_{\text {Unknown }}$ and $\mathrm{R}_{\text {cal }}$ were interchanged manually. However, in production, a low onresistance switch should be used. The choice of the switch depends on how large the unknown impedance range is and how accurate the measurement result needs to be. The examples in this document use just one calibration resistor, and so a low on-resistance switch such as the ADG849 can be used as shown in Figure 13. Multichannel switch solutions such as the quad

Figure 11. Magnitude Results for $Z_{C}=10 \mathrm{k} \Omega \| 10 \mathrm{nF}, R_{C A L}=1 \mathrm{k} \Omega$

ADG812 can also be used. The errors caused by the switch resistance on the $\mathrm{Z}_{\text {Unknown }}$ are removed during calibration, but by choosing a very low Ron switch, the effects can be further minimized.

Figure 13. Switching Between RCAL and Unknown Z Using the ADG849 UltraLow Ron SPDT Switch (Simplified Schematic, All Connections and Decoupling Not Shown)

LEARN MORE

CN-0217 Design Support Package:
http://www.analog.com/CN0217-DesignSupport
MT-085 Tutorial, "Fundamentals of Direct Digital Synthesis (DDS)," Analog Devices.
Riordan, Liam, "AD5933 Evaluation Board Example
Measurement," AN-1053 Application Note, Analog Devices.
Buchanan, David, "Choosing DACs for Direct Digital
Synthesis," AN-237 Application Note, Analog Devices.
ADIsimDDS Design and Evaluation Tool
AD5933/AD5934 Demonstration and Design Tool
Data Sheets and Evaluation Boards
AD5933 Data Sheet
AD5933 Evaluation Board
AD5934 Data Sheet
AD5934 Evaluation Board
AD8606 Data Sheet
ADG849 Data Sheet
ADG812 Data Sheet

REVISION HISTORY

6/11—Revision 0: Initial Version

 reserves the right to change any Circuits from the Lab circuits at any time without notice but is under no obligation to do so.

